• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1063
  • 488
  • 232
  • 157
  • 93
  • 51
  • 24
  • 16
  • 15
  • 12
  • 10
  • 10
  • 9
  • 6
  • 6
  • Tagged with
  • 2758
  • 776
  • 393
  • 355
  • 244
  • 230
  • 225
  • 211
  • 197
  • 194
  • 188
  • 187
  • 179
  • 177
  • 175
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
541

In-Situ Testing of Uretek's Injectable Barrier as a Mechanism for Groundwater Control

Hess, Jeremy 25 March 2016 (has links)
Construction projects involving the installation or repair of subsurface structures or utilities often require dewatering to induce a temporary lowering of the local groundwater elevation to facilitate construction. In the event that a known contaminant plume is present in an adjacent area, this dewatering may inadvertently draw the contaminant into the previously uncontaminated work area. Uretek Holdings, Inc. has developed its Injectable BarrierSM to be installed prior to dewatering exercises to provide a groundwater cut-off by reducing the potential movement of groundwater due to the hydraulic gradient induced by dewatering. A benefit of Injectable BarrierSM as compared to conventional methods of hydraulic control is that excavation is not required prior to its installation and no excess soils are generated through its installation. Injectable BarrierSM is a proprietary process registered with the United States Patent and Trademark Office by Uretek Holdings, Inc. Since methodical in-situ testing of the effectiveness of the Injectable BarrierSM has not been performed to date, it was the focus of this research to test the performance of the barrier under in-situ conditions utilizing a subsurface environment indicative of a West-Central Florida location. A testing plot to perform this research was selected on Hillsborough County property in Tampa, Florida which provided both a relatively shallow groundwater elevation in addition to a clay confining layer at a relatively shallow depth, making this an ideal location for testing the performance of the Injectable BarrierSM. After establishing the native conditions through baseline pump testing and repeating the testing procedure following the installation of the Injectable BarrierSM, a quantification of the reduction in hydraulic conductivity was achieved. Pumping tests were performed on the Injectable BarrierSM at its standard spacing as well as modified versions of the barrier with variation in the lateral spacing to include 6 foot, 4 foot, 3 foot, and 2 foot injection patterns to determine if a modified injection process could improve its performance. The 3 foot lateral spacing corresponding to the standard Injectable BarrierSM process indicated a 20% reduction in the hydraulic conductivity following its installation. By performing a small scale excavation following the completion of all pumping tests, it was discovered that the dispersion of the material in the subsurface appeared insufficient to provide the coverage needed to establish a barrier capable of further reducing the local hydraulic conductivity, especially at the shallowest injection depth of 3 feet below land surface (ft bls). It is concluded that modified amounts of injected material, closer lateral injection spacing, and potentially modified injection temperatures and component ratios could increase the effectiveness of the Injectable BarrierSM.
542

Experimental measurements of bulk modulus for two types of hydraulic oil at pressures to 140MPa and temperatures to 180°C

Yang, Shudong, Tao, Aihua, Luo, Yulin, Zhang, Junxiang, Zhou, Peng, Zhou, Lin 28 April 2016 (has links) (PDF)
Bulk modulus of hydraulic oil represents the resistance of hydraulic oil to compression and is the reciprocal of compressibility. The bulk modulus is a basic thermodynamic property of hydraulic oil that has a very important influence on work efficiency and dynamic characteristics of hydraulic systems, especially for the hydraulic systems at ultra-high pressure or ultra-high temperature. In this study, a bulk modulus experimental equipment for hydraulic oil was designed and manufactured, two types of hydraulic oil were selected and its isothermal secant bulk modulus were measured at pressures to 140MPa and temperatures of 20~180°C. Compared the experimental results with the calculated results from the prediction equations of liquid bulk modulus that proposed by Klaus, Hayward, and Song, it is found that the experimental results are not completely identical with the calculated results.
543

A telehandler vehicle as mobile laboratory for hydraulic-hybrid powertrain technology development

Serrao, Lorenzo, Ornella, Giulio, Balboni, Luca, Bort, Carlos Maximiliano Giorgio, Dousy, Carl, Zendri, Fabrizio 28 April 2016 (has links) (PDF)
The paper describes the design of a prototype vehicle used by Dana Holding Corporation as a mobile laboratory for the development of Spicer® PowerBoost® hydraulic-hybrid powertrain technology. A telehandler vehicle was selected due to its versatility. Starting from the high-level requirements, design choices from the powertrain layout to the control architecture are discussed. The hydraulic-hybrid powertrain system is described, and its performance is analyzed based on representative driving cycles.
544

Improvement of hydraulic control quality for deep drawing presses through retrofit

Helmke, Marcus, Majer, Herbert, Thanassakis, Andreas 02 May 2016 (has links) (PDF)
Retrofits of hydraulic and mechanical deep drawing presses often stop with the exchange of the electrical and the hydraulic parts. But that is only half the job. The use of high definition control electronics, faster CPUs and more dynamic hydraulic actuators, offers the opportunity of redesigning the already existing control concepts of the press. In this paper we present how the performance of the press, i.e. the control quality, can be increased for hydraulic ram and cushion axes. The improvement in control quality is achieved through the use of intelligent closed-loop and open-loopcontrol algorithms. Therefore, creasing and crack formation can be reduced, since enhancements in control quality have direct influence on the quality of the forming process. Results will be shown for hydraulic drawing cushion control, i.e. pressure control, as well as for hydraulic ram control, i.e. position, velocity and parallelism control. We present findings for hydraulic cushion control of a mechanical press type Arisa S-4-1600-470-230-LDE (link-drive press with 10 hydraulic cushions) and for ram- / cushion-control of hydraulic press type Müller-Weingarten ZE2100 (multi-curve press with 8-point cushion).
545

Toward Supervisory-Level Control for the Energy Consumption and Performance Optimization of Displacement-Controlled Hydraulic Hybrid Machines

Busquets, Enrique, Ivantysynova, Monika 03 May 2016 (has links) (PDF)
Environmental awareness, production costs and operating expenses have provided a large incentive for the investigation of novel and more efficient fluid power technologies for decades. In the earth-moving sector, hydraulic hybrids have emerged as a highly efficient and affordable choice for the next generation hydraulic systems. Displacementcontrolled (DC) actuation has demonstrated that, when coupled with hydraulic hybrids, the engine power can be downsized by up to 50% leading to substantial savings. This concept has been realized by the authors‘ group on an excavator prototype where a secondary-controlled hydraulic hybrid drive was implemented on the swing. Actuatorlevel controls have been formulated by the authors‘ group but the challenge remains to effectively manage the system on the supervisory-level. In this paper, a power management controller is proposed to minimize fuel consumption while taking into account performance. The algorithm, a feedforward and cost-function combination considers operator commands, the DC actuators‘ power consumption and the power available from the engine and hydraulic hybrid as metrics. The developed strategy brings the technology closer to the predicted savings while achieving superior operability.
546

Optimization of hydraulic drives for parabolic troughs

Nocker, Andreas 03 May 2016 (has links) (PDF)
HAWE Hydraulic SE, Munich, engineers and manufactures hydraulic drives (CSP-drives) for parabolic trough plants consisting of a compact power pack, directional and control valves, over-center valves, two cylinders and the fittings/hoses for connecting these components. Optional, but this is depending on the system and the control philosophy, also a hydralic accumulator. An optimized hydraulic drive for a parabolic trough field makes the power plant operator profit from savings at components, higher system efficiency, lower operational energy supply needs, less time spent on commissioning and first start-up, lower maintenance effort and increased life span of the drive and finally also savings on peripheral and safety devices. Many of shown proposals are even combining two or more of above mentioned advantages.
547

From reliable sensors to cylinder intelligence

Casper, Leo, van de Loo, Jasper 03 May 2016 (has links) (PDF)
Reliability of a piston rod position measurement system is key when applied to large hydraulic cylinders. This and other requirements lead to the development of the CIMS (Cylinder Integrated Measurement System), a contactless and highly accurate system that uses the Hall effect to detect an encoded piston rod. To eliminate deviations caused by mechanical tolerances, temperature and air gap variations etc., the raw signals are filtered and compensated. Its functionality has been extended by making statistical data available, based on the values measured. These include the number of strokes, cumulative stroke length, stroke length distribution, maximum velocity and acceleration, temperature classification and extreme temperatures. Assessment of these data enables the user to optimize his application. Comparison to historic data can give input to the preventive maintenance plan to reduce (unforeseeable) system downtime and to increase the system reliability. This development resulted into the CIMSmart. It is a significant step towards cylinder intelligence.
548

CFD modelling of ogee spillway hydraulics and comparison with physical model tests

Kanyabujinja, Nshuti Placide 03 1900 (has links)
Thesis (MEng)--Stellenbosch University, 2015. / ENGLISH ABSTRACT: Modern Computational Fluid Dynamics modelling (CFD) are becoming common design and analysis tools in the engineering field. Nowadays, project designs involve the use of CFD techniques along with physical scale modelling to analyse the complex rapidly varied and turbulent flows which would not be easily analysed by physical modelling. In particular, the consideration and/or use of CFD modelling in the Hydraulic Engineering field remains on the increase. Apart from being used for comparison with other design techniques, CFD may in future become a standalone modelling technique in hydraulic structures design. This research aims to use CFD models to validate the simulation of the flow over two ogee dam spillways which are installed in the Hydraulic Laboratory of Stellenbosch University. To achieve this simulation of the flow which involves an interaction between water and air, the flow behaviour has been mapped by the Volume of Fluid (VOF) and the realisable "𝑘−𝜀" turbulence numerical models. The Volume of Fluid (VOF) and the realisable "𝑘−𝜀" models simulate the free surface of two-phase flow and the flow turbulence, respectively. Firstly, the study embarks with details on the actual design approaches of a typical ogee dam spillway. It subsequently presents the geometry and dimensions of the physical models, the testing procedure and the experimental test results achieved from this modelling exercise. For CFD modelling, a commercially available Computational Fluid Dynamics (CFD) package, Ansys-Fluent, was used. To model the physical model, the use of Reynolds-averaged Navier-Stokes equations in combination with the realisable k-ε eddy-viscosity closure model was adopted. The process of CFD model development and the underlying theory of it are discussed in this thesis. Different test scenarios including steady and fully hydrodynamic states simulation for two and three-dimensional geometries were considered in this simulation to achieve the most accurate results. In order to determine the required mesh size, the mesh sensitivity tests were conducted on the 2 dimensional and 3 dimensional models. Finally, the pressure readings and water levels produced by numerical models are discussed through a validation process by comparing the CFD model results with the results obtained from physical models. The outcome proved that CFD models are able to map the behaviour of both flow phases since they exhibited a close correlation to those achieved in the physical models. Even though some slight differences in values were revealed, the graphical trend remains reasonably similar for all test results. / AFRIKAANSE OPSOMMING: Moderne gerekenariseerde vloeidinamika numeriese modelle (CFD) word deesdae dikwels deur ingenieurs gebruik. Projekontwerpe sluit tans die gebruik van CFD tegnieke asook fisiese skaalmodellering in om komplekse, vinnig-veranderede en turbulente vloei te ontleed. Hierdie tipe vloeie is moeilik om met fisiese modellering te ontleed. Die gebruik van CFD numeriese modelle in hidrouliese ingenieurswese is besig om toe te neem, Die bevindinge van CFD modelering word tans vergelyk met die bevindinge van ander ontwerptegnieke, maar in die toekoms mag dit moontlik gebruik word as die enigste modelleringstegniek in hidrouliese struktuurontwerp. Die doel met hierdie navorsing is om CFD modelering te gebruik om die vloei oor twee ogee-vormige afvoergeute wat in die hidrouliese labrotorium van die Universiteit van Stellenbosch ge-installeer is, te ondersoek. Ten einde hierdie vloei, wat die interaksie tussen water en lug insluit, te simuleer, is die vloeigedrag deur ”volume van vloeistof” (VOF) en die "𝑘−𝜀" turbulensie numeriese modules, gemodeleer. Die VOF en "𝑘−𝜀" numeriese modules simuleer onderskeidelik die vry oppervlakte vloei van die twee-fase vloei en turbulente vloei. Die ontwerp van ’n tipiese ”ogee”-tipe dam oorloop word bespreek, gevolg deur die beskrywing van die geometrie van die fisiese modelle, die toetsprosedure en die eksperimentele toetsresultate. Vir die CFD modellering is die CFD pakket, Ansys-Fluent, gebruik. Vir die simulering van die fisiese model is die Reynolds-gemiddeld Navier-Stokes vergelykings tesame met die k-ε eddy-viskositeit geslote module gebruik. Die proses van CFD ontwikkeling en die onderliggende teorie daarvan word bespreek. Verskillende toets-scenario’s wat 2D en 3D simulasies insluit, uitgevoer. Ten einde die toepaslike berekeningsrooster grootte vir die numeriese model te verkry, is sensitiewiteitstoetse uitgevoer op die twee- en drie-dimensionele numeriese modelle. Laastens is die CFD numeries gesimuleerde drukke en die watervlakke met die van die fisiese modelle vergelyk om die akkuraatheid van die CFD resultate te verkry. Die uitkomstes het getoon dat CFD modelle gebruik kan word om die gedrag van albei vloei fases te simuleer aangesien dit goed vergelyk het met die uitkomstes van die fisiese modellering. Daar was wel klein verskille in die druk waardes, maar die tendense in drukverspreiding was ooreenstemmend.
549

The potential for using energy from flared gas or renewable resources for on-site hydraulic fracturing wastewater treatment

Glazer, Yael Rebecca 18 September 2014 (has links)
The oil and gas well completion method of hydraulic fracturing faces several environmental challenges: the process is highly water-intensive; it generates a significant volume of wastewater; and it is associated with widespread flaring of co-produced natural gas. One possible solution to simultaneously mitigate these challenges is to use the energy from flared natural gas to power on-site wastewater treatment, thereby reducing 1) flared gas without application, 2) the volumes of wastewater, and 3) the volumes of freshwater that need to be procured for subsequent shale production, as the treated wastewater could be reused. In regions with minimal flaring a potential solution is to couple renewable electricity (generated from solar and wind energy) with on-site wastewater treatment, thereby 1) reducing the volumes of wastewater, 2) reducing the volumes of freshwater that need to be procured for subsequent shale production, and 3) displacing fossil fuel energy for treatment. This study builds an analytical framework for assessing the technical potential of these approaches. In this research, the hydraulic fracturing wastewater characteristics (such as quality, quantity, and flow rates) were considered along with various treatment technologies best suited to utilizing natural gas and renewable electricity, using the Permian Basin in west Texas as a geographic test bed for analysis. For the analysis looking at using flared natural gas energy for on-site treatment, the required volume of gas to meet the thermal energy requirements for treatment was calculated on a per-well basis. Additionally, the volume of product water (defined here as the treated water that can be reused) based on the technology type was determined. Finally, the theoretical maximum volume of product water that could be generated using the total volume of natural gas that was flared in Texas in 2012 as a benchmark was calculated. It was concluded that the thermal energy required to treat wastewater that returns to the surface over the first ten days after a well is completed is 140–820 Million British Thermal Units (MMBTU) and would generate 750–6,800 cubic meters of product water depending on the treatment technology. Additionally, based on the thermal technologies assessed in this study, the theoretical maximum volume of product water that can be generated statewide using the energy from the flared gas in 2012 is 180–540 million cubic meters, representing approximately 3–9% of the state’s annual water demand for municipal purposes or 1–2.4% of total statewide water demand for all purposes. This is enough gas to treat more water than was projected would be used for the entire mining sector in 2010 in Texas. For the analysis coupling renewable electricity with on-site treatment, the necessary energy for water management upstream and downstream of a well site was calculated and compared with the current energy requirements and those of a proposed strategy where a portion of the wastewater is treated on-site and reused on a subsequent well. Through this analysis, it was determined that implementing on-site treatment using renewable electricity could reduce freshwater requirements by 11–26%. Finally, it was calculated that this approach could displace approximately 16% of the fossil fuel energy requirements for pumping freshwater, trucking that water to the well site, and trucking wastewater to a disposal well. / text
550

The drill down

Friel, Katherine Dailey 14 October 2014 (has links)
The town of Millerton, Pa., has always been a small, rural farming community. Settled atop of the famed Marcellus Shale in the foothills of the Appalachians, there have always been rumors of natural gas in the hills around town. In 2008, natural gas companies arrived and began drilling. For a select few lucky enough to have property around the gas wells, their arrival means big money. But not all residents will get so lucky. For many folks in Millerton, the arrival of the gas companies means more traffic, more pollution, more crime and more inconvenience without a monthly royalty check to buffer the pain. The sheer amount of natural gas scientists predict is in the Marcellus Shale will forever change how the U.S. and the rest of the world use energy. Politicians tout it as liberation from foreign oil. Scientists see it as an alternative to “dirty” coal. For this small town, natural gas means change. The money the natural gas companies are pumping into this local economy will change the lives of the townsfolk- and the town itself- forever. / text

Page generated in 0.0521 seconds