• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 16
  • 3
  • 2
  • 1
  • 1
  • Tagged with
  • 25
  • 25
  • 17
  • 11
  • 10
  • 10
  • 9
  • 8
  • 7
  • 6
  • 5
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Optimization of hydraulic drives for parabolic troughs

Nocker, Andreas 03 May 2016 (has links) (PDF)
HAWE Hydraulic SE, Munich, engineers and manufactures hydraulic drives (CSP-drives) for parabolic trough plants consisting of a compact power pack, directional and control valves, over-center valves, two cylinders and the fittings/hoses for connecting these components. Optional, but this is depending on the system and the control philosophy, also a hydralic accumulator. An optimized hydraulic drive for a parabolic trough field makes the power plant operator profit from savings at components, higher system efficiency, lower operational energy supply needs, less time spent on commissioning and first start-up, lower maintenance effort and increased life span of the drive and finally also savings on peripheral and safety devices. Many of shown proposals are even combining two or more of above mentioned advantages.
2

Characterisation of a parabolic trough collector using sheet metal and glass mirror strips

Woodrow, Oliver Rhys January 2017 (has links)
A novel type of parabolic trough collector was characterised using a very basic theoretical model. This model looked at an ideal case and provided a basic expectation that was compared to actual measurements. The model showed that greater improvements can be achieved if heat losses to the environment are limited or omitted. This can be achieved by using a glass shield to insulate the receiver in a vacuum to limit the effect wind has and therefore limit convective losses. The experimental characterisation of the PTC consisted of taking six different temperature measurements to better understand the energy balances taking place. Four different configurations were tested, using two different types of concentrator and in each case a receiver that was either unpainted or painted with a semi matte black paint. The different types of concentrator were either stainless steel sheet metal or discretised glass mirror strips, similar to a linear Fresnel collector. Experimental runs were conducted on cloudless days for an hour and 15 minutes. This allowed for three runs to be performed on a single day. Using the theoretical model and comparing it to the experimental data, an efficiency was calculated. This efficiency averaged 14 % when the receiver was unpainted and 13 % when the receiver was painted for the metal sheets. The glass mirror strips had average efficiencies of 54 % and 45 % for an unpainted and painted receiver respectively. The model is very basic and can be improved upon if more variables are taken into consideration, such as convective heat losses. It was also recommended that wind measurements are taken in future tests. A property looked at to evaluate the effectiveness of each type of configuration was the average energy supplied to the thermal heating fluid over the course of an experimental run. For this the averaged values over all the experimental runs conducted for stainless steel sheet metal were 258 W and 332 W for an unpainted and painted pipe respectively. When using the glass mirrors an average energy value of 1049 W was supplied when the pipe was unpainted and an average of 1181 W was gained in the runs conducted after the pipe had been painted. Painting the receiver had little to no effect. The surface temperature of the receiver after painting the pipe was not higher and a slight increase in the energy gained by water was observed. This was explained by inaccuracies during testing as scattered light may have caused an interference on some of the measurements. There were also human inaccuracies in testing which should be omitted in future tests by implementing, for one, a functional tracking system. Future tests should be designed in such a way to completely omit irradiance affecting the thermocouple taking the measurement. Glass mirrors fared far better than the stainless steel sheet metal counterpart. It was recommended that they are used as the concentrator of choice. Higher efficiencies were achieved and in some cases almost four times the energy was supplied to the water in the pipe. This was attributed to a much lower concentrator temperature, on average 11 °C lower than the temperature of the metal sheets, as well as a much better ability to concentrate sunlight onto a single focal point. However, the glass mirror strips were proven to be very fragile and as such, require protection from the elements. While the strips were lighter and caused less of a load during windy conditions, they were susceptible to oscillations from gusty wind. This led to a number of strips breaking and needed to be replaced. By discretising the strips into individual pieces, they had the benefit of only needing to replace the strips that were damaged. This is also true for all future runs. It is still recommended that a tarp be used to protect the glass mirrors. Using glass mirror strips as a concentrator combined LFC technology with PTC technology and a novel PTC design was achieved. The design still required the installation area of a PTC. The novel design was compared to Industrial Solar’s industrial LFC module, LF-11, as it shares many similarities to LFC technology. The peak thermal output of the rig was significantly lower at 346 W/m2 compared to the industrial value of 562 W/m2. However, the noteworthy differences in design and optimisation between the two modules meant the results achieved were comparable. It is expected that better and more comparable results can be realised once the inherent flaws in the design, such as tracking the sun, aperture size and adding a vacuum absorber, are addressed. It is recommended that more research and emphasis is put into this field as an alternative energy power plant for South Africa. / Dissertation (MEng)--University of Pretoria, 2017. / Chemical Engineering / MEng / Unrestricted
3

Design and Analysis of a Parabolic Trough Solar Concentrator

Skouras, George N 01 August 2018 (has links)
A prototype solar desalination system (SODESAL) with a parabolic-trough solar concentrator (PTSC) and evacuated tube was designed and analyzed to determine the solar thermal capabilities for small-scale distillation and energy generation. A proof-of-concept study verified that distillation is possible with the system as designed, however a rupture occurred in the copper heat-pipe heat exchanger due to overheating. The internal temperatures of an aluminum heat transfer fin were measured inside an evacuated tube typically used in solar water heater systems to understand the lateral heat distribution and identify possible causes of the rupture. Solar radiation was measured for both the summer and winter solstices to understand the relationship between incident solar radiation and the potential freshwater yield of the system. The lateral heat distribution of the AHTF is dependent upon the PTSC’s solar incident angle. A consistent lateral heat distribution occurred across the AHTF approximately 40 mins after solar noon. The temperature difference between each end of the AHTF can exceed over 225 °C leading up to and following solar noon when the PTSC was set at a static slope. The SODESAL system’s future applications, system improvements and additional research are also discussed along with the capability of small-scale CSP systems.
4

Techno-Economic Analysis of Parabolic Trough Collectors : A case study for two industrial parks in Zhejiang, China / Tekno-ekonomisk analys av decentraliserade Solfångare : En fallstudie av två industriella parker i Zhejiang, Kina

Lemaitre, Emile, Peri, Michael January 2019 (has links)
Transitioning the industrial sector’s energy system to renewable sources is crucial to reduce climate change. There is no exception for China, currently having the highest absolute levels of greenhouse gas (GHG) emissions in the world. The industrial sector accounts for about two thirds of the national energy consumption and coal is the country’s most important energy source. The integration of alternative energy sources such as solar can help transitioning the country’s energy system. By presenting a techno-economic analysis, this thesis gives an indication for profitability and in what extent there is a potential to cover the steam demand with a decentralized solar heat technology for two industries, fish and textile, in the Zhejiang province in eastern China. The used solar technology is a system with parabolic trough collectors (PTCs) with an integrated gas fired boiler. The PTC-system is compared with a coal-fired centralized supplier. The analyzed factors were roof area, solar irradiation, solar fraction, cost for steam from the centralized suppliers and cost of coal and natural gas. The maximum CO2 reduction is found to be dependent on the potential installation area. The greater area installed, the larger is the capacity and thus also the CO2 savings. The share of total steam demand covered by solar is directly proportional to the demand in relation to the installed solar capacity. The fish industry, having the lowest steam demand in relation to the roof area, is found to be able to save the largest relative proportion of CO2 emissions. Different scenarios are presented, modifying the fuel cost and fuel type for the PTC-system’s boiler, adjusting the steam cost from the centralized suppliers and using two different solar fractions of 35% and 50%. The CO2 savings depends on what fuel is being used and the solar fraction. Larger CO2 reductions are possible with a gas fired boiler compared to a coal fired one. But using a coal fired boiler makes it more economically profitable, matching the low coal price used for the centralized supplier. The scenario with most CO2 reductions is attained when using a high solar fraction of 50% and a natural gas fired boiler. The annual CO2 savings is then ranging from 15 tons per year for the company having the lowest steam capacity, up to 2090 tons/year for the company with one of the highest. Another significant factor is the companies’ seasonal activity. For the company having the least amount of active days per year (84 out of 365 days), the PTC-system is unprofitable whichever scenario. However, fuel costs for the boiler is found to be one of the most significant factors for the outcome determining if the investigated PTC-system is profitable or not. For all of the companies, there was only one that could provide all its steam demand with the PTC-system. This indicates that other energy sources need to be integrated to provide the steam demand of the enterprises with a renewable energy system. / Att omvandla industrins energisystem med förnyelsebara energikällor är väsentligt för att bromsa klimatförändringarna. Det är inget undantag för Kina, som nuvarande har de största absoluta nivåerna av utsläpp av växthusgaser i världen. Industrin står för ca två tredjedelar av den nationella energiförbrukningen och kol är landets största energikälla. Integrerandet av andra alternativ såsom solenergi kan dock hjälpa till i landets energiomvandling. Denna rapport syftar till att presentera en tekno-ekonomisk analys av en decentraliserad solfångare och ge indikation på lönsamhet samt i vilken grad tekniken kan förse behovet av ånga för två industrier, textil och fiske, i Zhejiang provinsen i östra Kina. Den solfångarteknik som används är ett system med Parabolic trough collectors (PTCs) med integrerad gaseldad ångpanna. Systemet jämförs med kraftvärmeverk som drivs med kol. De analyserade faktorerna är takytan, solar fraction, solinstrålning, kostnad för ånga samt ångpannans bränslekostnader. Besparingarna för CO2-utsläpp beror på den potentiella installationsytan. Ju större installationsyta, desto högre kapacitet och därmed högre CO2-besparingar. Andelen av behovet ånga som kan förses med solfångare är i direkt proportion till takytan och det totala behovet. Fiskeindustrin, som har lägre ångbehov i relation till takyta, visar sig kunna spara den största relativa mängden CO2-utsläpp. Olika scenarier presenteras, där bränslekostnaden och typ av bränsle för PTC-systemets ångpanna modifieras, kostnaden för ånga från de centraliserade leverantörerna justeras och solar fraction ändras mellan 35% och 50%. Besparingarna i CO2-utsläpp beror på vilket bränsle som används samt solar fraction. Större CO2-reduktion är möjlig med en gaseldad panna jämfört med en koleldad. Dock är en koleldad panna lönsammare när den matchar det låga priset på kol som används för de centraliserade leverantörerna. Scenariot med de största CO2-besparingarna uppnås med en hög solar fraction på 50% och en naturgaseldad panna. De årliga CO2-besparingarna varierar från 15 ton per år för det företag som har den lägsta ångkapacitet, upp till 2090 ton per år för ett företag med en av den högsta kapaciteten ånga. En annan viktig faktor är företagens aktivitet per år. Företaget som har minst aktiva dagar per år (84 av 365 dagar), är ej lönsamt i något av de testade scenarierna. Bränslekostnaderna för pannan har emellertid visat sig vara en av de viktigaste faktorerna för resultatet som avgör om det undersökta PTC-systemet är lönsamt eller inte. Bland alla företagen fanns det bara ett som kunde förse hela sitt ångbehov, med PTC-systemet. Detta indikerar att andra energikällor måste införas för att förse företagens ångbehov med ett förnybart energisystem.
5

Solar Heat in Industrial Processes : Integration of Parabolic Trough Solar Collectors Dairy Plants and Pharmaceutical Plants

Al-Hasnawi, Hassan January 2016 (has links)
The industry sector accounts for a high share of the final energy consumption, with industries in EU-28accounting for a quarter of the final energy demand. Studies also show that 45 % of the industrial heatdemand in EU-27 is in a temperature range that can be supplied with present day solar collectors. Despitethis large potential, solar heat faces obstacles hindering its growth in the industrial sector. The mostsignificant obstacle is the low insight of the industrial system designs and energy demands. Those arecrucial factors for the feasibility and dimensioning of solar heating systems. Three case studies aretherefore conducted in dairy and pharmaceutical plants in order to review the most promising integrationpoints for parabolic trough solar collectors in terms of annual heat demand, temperature level andintegration effort. Two case studies are performed in dairy plants and one in a pharmaceutical plant, alllocated in Sweden. The analyses comprised reviewing energy mappings, process and instrumentationdiagrams of processes and boiler systems, and hourly energy demand data. Simulations have beencarried out with Polysun for the processes with hourly energy data available.Four integration points have been determined to be high priority solar heat integration points in dairyplants, when considering annual thermal energy demand, temperature levels and integration effort.Those are the low pressure steam line, heating of feedwater, clean in place systems and pasteurizers.Solar heat integration concepts have been presented for all the aforementioned heat sinks andsimulations have been conducted for the low pressure steam line and heating of feedwater. A significantamount of excess heat is produced as a result of fluctuating heat demands and peak solar heat productionhours. Further investigation should be carried out, in order to review the potential of supplying excessheat to other heat sinks. Despite the reviewed potential of the clean in place systems and pasteurizers,lack of the hourly energy demand has hindered further analyses of those systems. It is thereforerecommended to conduct energy measurements before taking further measures.Two integration points have been identified in the pharmaceutical plant, namely autoclaves andmultiple-effect distillers. Solar steam generation concepts have been presented for both processes. Theautoclaves are provided with 4,5 bar steam intermittently, as they work with batches and can have ondutyand off-duty intervals ranging from 3-30 minutes. The multiple-effect distillers are providedwith 7 bar steam, which is of rather high pressure for the solar collectors model on which thesimulations are based. The heat demand of the distillers is more or less constant.It was generally easier to acquire data for the integration points at the supply level. For instance, all heatsinks at the supply level had energy demand data available, contrary to the process level. This inclinesadditional focus on integration to the supply level, if the extent of the feasibility study is to be kept to aminimum.
6

Simulations Of A Large Scale Solar Thermal Power Plant In Turkey Using Concentrating Parabolic Trough Collectors

Usta, Yasemin 01 December 2010 (has links) (PDF)
In this study, the theoretical performance of a concentrating solar thermal electric system (CSTES) using a field of parabolic trough collectors (PTC) is investigated. The commercial software TRNSYS and the Solar Thermal Electric Components (STEC) library are used to model the overall system design and for simulations. The model was constructed using data from the literature for an existing 30-MW solar electric generating system (SEGS VI) using PTC&rsquo / s in Kramer Junction, California. The CSTES consists of a PTC loop that drives a Rankine cycle with superheat and reheat, 2-stage high and 5-stage low pressure turbines, 5-feedwater heaters and a dearator. As a first approximation, the model did not include significant storage or back-up heating. The model&rsquo / s predictions were benchmarked against published data for the system in California for a summer day. Good agreement between the model&rsquo / s predictions and published data were found, with errors usually less than 10%. Annual simulations were run using weather data for both California and Antalya, Turkey. The monthly outputs for the system in California and Antalya are compared both in terms of absolute monthly outputs and in terms of ratios of minimum to maximum monthly outputs. The system in Antalya is found to produce30 % less energy annually than the system in California. The ratio of the minimum (December) to maximum (July) monthly energy produced in Antalya is 0.04.
7

Dynamic process modelling of the HPS2 solar thermal molten salt parabolic trough test facility

Temlett, Robert 10 May 2019 (has links)
In recent years power generation from renewable energy has grown substantially both in South Africa and around the world. This growth is set to continue as there is more pressure to reduce the burning of fossil fuels. However, renewable energy power generation suffers from unpredictability, which causes problems when it comes to managing power grids. Concentrated Solar Power (CSP) plants offer a practical solution to store power in the form of thermal energy storage (TES). Thus, the plant can run when there is no solar energy available, leading to a more stable power supply. Unfortunately, CSP plants cost more than other renewables such as photovoltaic and wind power. Thus, there is a need for research into how to bring down the cost of CSP plants. One of the most proven types of CSP is the parabolic trough plant. The most recent innovation is to try and use molten salt as the heat transfer fluid which would reduce the cost of the plant. However, this new technology has not been implemented on a full scale CSP plant and little testing has been done to prove the technology. The HPS2 is a test facility aimed at testing the use of molten salt as a heat transfer fluid (HTF). This test facility, located in Evora Portugal, is being developed by an international consortium led by the German DLR institute of Solar Research. It is one of the first test facilities of its kind where experiments will be conducted to demonstrate the validity of using molten salt as a HTF and a storage medium in a parabolic trough CSP plant. The HPS2 test facility is not yet operational and there is a need for a dynamic thermofluid process model to better understand and predict both its steady state and transient operational behaviour. This dissertation reports on the development of such a dynamic thermofluid process model and the results obtained from it. The process model developed primarily focuses on the steam cycle with the TES incorporated into the model. The physical geometry of each of the components are employed to construct discretized elements for which the conservation of mass, energy, and momentum are applied in a one-dimensional network approach. The economizer and evaporator combined has a helical coil geometry and uses molten salt as a heat transfer fluid, which is unique. Thus, correlations had to be adjusted for the flow characteristics found in the economizer/evaporator. Results from the steady state simulations of the steam cycle show that the molten salt mass flowrate through the steam generation system will have to be reduced from the initially expected value to meet operational requirements. Results of the dynamic simulations show that the test facility will be able to produce a constant power supply despite transient solar conditions and highlights key dynamic responses for operators to be aware of.
8

Optimization of hydraulic drives for parabolic troughs

Nocker, Andreas January 2016 (has links)
HAWE Hydraulic SE, Munich, engineers and manufactures hydraulic drives (CSP-drives) for parabolic trough plants consisting of a compact power pack, directional and control valves, over-center valves, two cylinders and the fittings/hoses for connecting these components. Optional, but this is depending on the system and the control philosophy, also a hydralic accumulator. An optimized hydraulic drive for a parabolic trough field makes the power plant operator profit from savings at components, higher system efficiency, lower operational energy supply needs, less time spent on commissioning and first start-up, lower maintenance effort and increased life span of the drive and finally also savings on peripheral and safety devices. Many of shown proposals are even combining two or more of above mentioned advantages.
9

Techno-Economic Assesment of Parabolic Trough Steam Generation for Hospital

Hagos, Dejene Assefa January 2011 (has links)
Hospitals are one of the most energy consuming centers in which thermal energy is utilized for different medical equipments and others. Sterilizers, laundry and kitchens are the main thermal energy utilizing equipments. In addition, large amount of hot water is utilized mainly for showering and dish washing. The main sources of this thermal energy are fossil fuel for oil fired boilers and solar irradiation for solar thermal steam generation system. This project aims in analyzing the Technical performance of parabolic trough steam generation and oil fired boiler steam generation system for Black lion general specialized hospital which is located in Addis Ababa and to perform economic assessment on both systems so as to make comparison test. The result from technical feasibility study shows the parabolic trough can meet the steam demand of the hospital at the required time, more than 8hour per day, as the hospital currently require steam for different activities during the day time for 8hour per day. During cloudy day the conventional back up steam generation system will meet the daily demand for few days of the year. The economic assessment result shows that although the initial investment of concentrated solar steam generation is high as compared to convention steam generation system, the reverse is observed in operation and maintenance cost, resulting solar thermal steam generation break even (payback) to occur early, after 7 year the system let to operate over the conventional oil fired steam generation. In addition the levelized cost of energy for concentrated solar steam generation is found to be 58% higher than conventional steam generation.   Hence, the result shows that parabolic trough is found to be more economical for steam generation than oil fired boiler. If solar thermal steam generation (parabolic through) is implemented, the fuel consumption and operational cost of the boiler can be reduced appreciably.
10

Integration of solar thermal collectors in the dairy industry: A techno-economic assessment : A case study of Dubai

Shah, Hassim January 2021 (has links)
A predominant amount of energy needed in the industrial sector is in the form of heat. A significant number of industries in the world still relies on fossil fuels for meeting their heat requirements. A transition to renewable energy for heating needs is at a snail's pace due to fossil fuel lock-in, cost superiority of conventional fuels, and less government support for renewable technology for thermal requirements. The dairy industry is one of the sectors that need heat energy for its production process. This study deals with a techno-economic analysis on the integration of parabolic trough collectors in the dairy industry. The thesis finds the barriers for solar-thermal collectors to evolve in the dairy sector and the viewpoint of the dairy industry towards the acceptance of solar thermal for meeting their thermal needs. From a literature review, it is observed that the need for dairy product will increase in the coming year. To meet the demand, the production process has to be increased. For sustainable production, companies have to rely on environment-friendly energy sources to meet the thermal demand. In the thesis work, it was also found that for several solar fractions, the LevelizedCost of Heat (LCoH) of solar-assisted heating system is less than the LCoH of the fossil-fueled conventional boiler. Therefore, it is economically viable to integrate solar thermal collectors in the dairy industry. The project also compares the LCoHof solar-assisted heating system when solar integration is done at a) feed water heating, b) direct steam generation, and c) process integration. The effect of integration point on the solar fraction, LCoH, and carbon mitigation potential is presented for a real case dairy unit in Dubai. The simulations are performed using a dynamic simulation tool. Results show that minimum LCoH and solar fraction are achieved for process integration. The process integration results in up to 90 % of the solar fraction. Through process integration, the LCoH of the conventional boiler can be reduced by 60%.

Page generated in 0.134 seconds