• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • 3
  • 2
  • 1
  • Tagged with
  • 13
  • 13
  • 4
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Monitoring a Shallow Gasoline Release using GPR at CFB Borden

McNaughton, Cameron, Hugh January 2011 (has links)
This hydrogeophysical field experiment evaluated the ability of high frequency (450 & 900 MHz) ground penetrating radar (GPR) to characterize the release of gasoline over an annual cycle of in situ conditions. In August 2008, 200 liters of E10 gasoline were released into the unconfined sand aquifer at CFB Borden. The 900 MHz profiling clearly shows the development of shallow (i.e., above 10 ns) high reflectivity in the vicinity of the trench immediately after the release. Additional lateral extension of high reflectivity zone was observed over the following 20 days until the seasonal water table low stand occurred, after which no further lateral movement was observed. Throughout the remainder of the monitoring, the 900 MHz profiling observed a long-term dimming of reflectivity at the periphery of the impacted zone. While direct imaging of the shallow impacted zone by the 450 MHz antennas was significantly obscured by the superposition with the direct air-ground wave arrival; its improved depth of penetration allowed the measurement of a velocity “pull-up” of an underlying stratigraphic interface resulting from the displacement of low velocity water by high velocity gasoline. The maximum pull-up was observed during the water table low stand. The ongoing changes in the pull-up magnitude during the remainder of the observation period suggest the continued redistribution of fluids in the impacted zone. Because of the shallow depth of the gasoline impacted zone, the effects of freezing during the winter period were observed in the GPR imaging. The presence of the gasoline impacted zone appears to have affected the depth of freezing, causing a depression of the frozen soil base. The dimming of the direct air-ground wave complex indicates that the contaminant phase brought to the surface by the water table fluctuations have impacted the nature of the near-surface freezing.
12

Groundwater Recharge from a Portion of the Santa Catalina Mountains

Belan, R. A., Matlock, W. G. 05 May 1973 (has links)
From the Proceedings of the 1973 Meetings of the Arizona Section - American Water Resources Assn. and the Hydrology Section - Arizona Academy of Science - May 4-5, 1973, Tucson, Arizona / The geohydrology of a portion of the Santa Catalina Mountains including the definition of aquifer systems in the foothills was studied in order to calculate groundwater recharge to the Tucson basin. This underlying groundwater aquifer is the only source of Tucson, Arizona's water supply. A well network, well logs, geologic profiles, and a water level contour map were used as source information. Recharge was found to occur in some sections of washes and close to the mountains where washes cross or coincide with faults. Significant recharge to sand and gravel aquifers occurs directly through faults and joints. Little of the surface runoff is thought to recharge local aquifers because of low permeability layers beneath the alluvium and the short duration of the flows. Recharge calculation using the Darcy equation was subject to considerable error; but flow net analysis showed the total recharge to be 336 acre-feet per year representing about 50 acre feet per mile of mountain front per year.
13

Groundwater-stream water interactions: point and distributed measurements and innovative upscaling technologies

Gaona Garcia, Jaime 27 June 2019 (has links)
The need to consider groundwater and surface water as a single resource has fostered the interest of the scientific community on the interactions between surface water and groundwater. The region below and alongside rivers where surface hydrology and subsurface hydrology concur is the hyporheic zone. This is the region where water exchange determines many biogeochemical and ecological processes of great impact on the functioning of rivers. However, the complex processes taking place in the hyporheic zone require a multidisciplinary approach. The combination of innovative point and distributed techniques originally developed in separated disciplines is of great advantage for the indirect identification of water exchange in the hyporheic zone. Distributed techniques using temperature as a tracer such as fiber-optic distributed temperature sensing can identify the different components of groundwater-surface water interactions based on their spatial and temporal thermal patterns at the sediment-water interface. In particular, groundwater, interflow discharge and local hyporheic exchange flows can be differentiated based on the distinct size, duration and sign of the temperature anomalies. The scale range and resolution of fiber-optic distributed temperature sensing are well complemented by geophysics providing subsurface structures with a similar resolution and scale. Thus, the use of fiber-optic distributed temperature sensing to trace flux patterns supported by the exploration of subsurface structures with geophysics enables spatial and temporal investigation of groundwater-surface water interactions with an unprecedented level of accuracy and resolution. In contrast to the aforementioned methods that can be used for pattern identification at the interface, other methods such as point techniques are required to quantify hyporheic exchange fluxes. In the present PhD thesis, point methods based on hydraulic gradients and thermal profiles are used to quantify hyporheic exchange flows. However, both methods are one-dimensional methods and assume that only vertical flow occurs while the reality is much more complex. The study evaluates the accuracy of the available methods and the factors that impact their reliability. The applied methods allow not only to quantify hyporheic exchange flows but they are also the basis for an interpretation of the sediment layering in the hyporheic zone. For upscaling of the previous results three-dimensional modelling of flow and heat transport in the hyporheic zone combines pattern identification and quantification of fluxes into a single framework. Modelling can evaluate the influence of factors governing groundwater-surface water interactions as well as assess the impact of multiple aspects of model design and calibration of high impact on the reliability of the simulations. But more importantly, this modelling approach enables accurate estimation of water exchange at any location of the domain with unparalleled resolution. Despite the challenges in 3D modelling of the hyporheic zone and in the integration of point and distributed data in models, the benefits should encourage the hyporheic community to adopt an integrative approach comprising from the measurement to the upscaling of hyporheic processes.

Page generated in 0.0535 seconds