Spelling suggestions: "subject:"hydrodeoxygenation"" "subject:"désoxygénation""
1 |
Valorisation catalytique de produits oxygénés issue des biorafinneries de lingo-cellulose / Catalytic upgrading of oxygenated building blocks in lignocellulose based biorefineriesZhang, Yu 19 January 2017 (has links)
Cette thèse porte sur l'hydrogénation en phase gazeuse du furfural sur des oxydes de fer et de magnésium. De nombreux catalyseurs avec différents ratio molaires en fer et magnésium ont été préparés par des méthodes de co-précipitation ou d'imprégnation. Ils ont été ensuite testés lors de la réduction du furfural (FU) en utilisant du méthanol comme donneur d'hydrogène. L'alcool furfurylique (FAL) et le 2-methyl furfural (MFU) étaient les principaux produits obtenus démontrant alors que les systèmes Mg/Fe/O peuvent favoriser les réactions d'hydrogénation séquentielles et d'hydrogénolyse. Les catalyseurs imprégnés se sont révélés plus actif et sélectif vis-à-vis des MFU que ceux préparés par co-précipitation. Les données rapportées ont montré que la distribution du produit était fortement influencée par la teneur en fer et par l'acide résultant, ainsi que les propriétés d'oxydoréduction du matériau. En effet, l'introduction de fer à la surface d'oxyde basique a conduit à l'addition d'acidité de Lewis et de potentiel d'oxydoréduction dans le système, améliorant significativement la conversion de FU et la production de MFU. L'activation des différentes espèces à la surface du catalyseur a été étudié in-situ par DRIFTS et FTIR. Les résultats révèlent que la basicité du MgO favorise l'activation du méthanol et que le potentiel d'oxydoréduction du FeOx pourrait être responsable de l'hydrogénolyse de l'alcool furfurylique / This PhD project is focused on the gas phase hydrogenation of furfural over iron and magnesium oxides. Numerous catalysts with different iron and magnesium molar ratios, were prepared by co-precipitation or impregnation methods and were tested for the reduction of furfural (FU) using methanol as hydrogen donor. Furfuryl alcohol (FAL) and 2-methyl furfural (MFU) were the main products obtained, demonstrating that Mg/Fe/O systems can promote sequential hydrogenation and hydrogenolysis reactions. Impregnated catalysts demonstrated to be more active and selective towards MFU than co-precipitated ones. Reported data demonstrated that product distribution was strongly influenced by the iron content and from the resulting acid and redox properties of the material. As a matter of fact, the introduction of iron on the surface of the basic oxide led to the addition of Lewis acidity and redox capacity in the system, significantly enhancing FU conversion and MFU production. The activation of different species on the catalyst surface has been studied by in situ DRIFTS and FTIR. The results reveal that the MgO basicity favors methanol activation and FeOx redox capacity might be the responsible of furfuryl alcohol hydrogenolysis
|
2 |
Activité et stabilité de phases sulfures pour l'hydrotraitement d'huiles végétalesRuinart de Brimont, Mathias 13 October 2011 (has links) (PDF)
En combinant expérimentations et calculs ab initio, nous proposons une étude rationnelle des mécanismes de désoxygénation de molécules modèles pertinentes (heptanoate d'éthyle et heptanal) afin de fournir des guides pour définir des systèmes catalytiques optimaux pour l'hydrotraitement de matières premières renouvelables (huiles végétales, graisses animales). L'hydrotraitement d'huiles végétales, par la réaction de désoxygénation, est une voie alternative à la transestérification et peut être envisagée pour obtenir une base gazole de haute qualité. La transformation des composés oxygénés modèles a été étudiée sous une pression totale de 1.5 MPa, à une température de 523 K, dans un réacteur à lit fixe en présence de différents sulfures de métaux de transition massiques (SMT). Cette étude a mis en évidence l'influence de la nature phase sulfure sur la sélectivité des voies de désoxygénation (hydrodésoxygénation (HDO) et/ou décarbonylation/ décarboxylation (DCO)) ainsi que la réactivité particulière du sulfure de rhodium lors de la transformation de l'heptanoate d'éthyle. À l'inverse, quelle que soit la phase sulfure utilisée, la transformation de l'heptanal suit principalement la voie HDO. Dans nos conditions réactionnelles, l'heptanal a été identifié comme un intermédiaire de cette voie de désoxygénation. L'effet promoteur du cobalt et du nickel sur l'activité du sulfure de molybdène monométallique a été observé lors de la transformation de l'heptanal. La relation entre les activités en désoxygénation et en HDO et l'énergie de liaison métal-soufre (E(MS)) calculée ab initio des solides suit une courbe en volcan. Le sulfure mixte NiMoS (0.43), qui présente une E(MS) intermédiaire (127 kJ.mol-1), est le SMT le plus actif pour les deux réactions. Le catalyseur bimétallique CoMoS (0.1) présente la sélectivité HDO/DCO la plus élevée. À l'aide des résultats catalytiques et de calculs ab initio, deux mécanismes réactionnels sont proposés pour les voies de réactions HDO et DCO
|
3 |
Désoxygénation de composés modèles représentatifs de ceux présents dans les biohuiles sur catalyseurs sulfurés / Hydrodeoxygenation of model oxygenates compounds representative of bio-oil on sulfided catalystsBrillouet, Soizic 11 December 2014 (has links)
L'utilisation de biohuiles comme carburants provenant de la transformation de différents types de biomasse (lignocellulosique, huile végétale, algue,...) est une alternative intéressante aux produits pétroliers développée depuis quelques années par l'Union Européenne. Cependant, le taux d'oxygène de ces biohuiles doit être fortement réduit avant leur introduction dans le pool carburant.Afin de modéliser ces huiles, différents composés oxygénés modèles ont été utilisés (acide décanoïque, décanal, phénol) seuls ou en mélange. Leur désoxygénation a été étudiée à 340 °C et sous 4 MPa, à la fois sur catalyseurs sulfures supportés sur alumine (Mo, CoMo, NiMo), et sur catalyseurs massiques de type NiMoS.Dans ces conditions, la désoxygénation de l'acide décanoïque conduit à la formation d'hydrocarbures en C10 et en C9, ces derniers étant majoritaires sur catalyseurs promus (CoMo et NiMo). La désoxygénation du phénol conduit à la formation d'aromatiques et de naphtènes, ces derniers étant majoritaires quel que soit le catalyseur utilisé. Un fort effet inhibiteur de l'acide sur la désoxygénation du phénol a été mis en évidence, attribué à un phénomène de compétition à l'adsorption en faveur de l'acide.Afin de s'affranchir de l'effet de support, des catalyseurs massiques constitués exclusivement de phases NiMoS ont été synthétisés en présence de différents agents (liquide ionique, formamide, eau). Leurs activités et sélectivités ont été mesurées en désoxygénation de l'acide décanoïque et du phénol. Sur ces deux composés, le solide formé dans l'eau a montré les meilleures activités. / Using bio-oil as engine fuels coming from conversion of biomass (lignocellulosic, vegetable oils, microalgae) is an interesting alternative to petroleum-based products depeloped over the last few years by the European Union. However, oxygen concentrations observed in bio-oil need to be sharply reduced before their introduction in the fuel pool.In order to model bio-oils, the effect of various oxygenates compounds was studied (decanoic acid, decanal and phenol) alone or in a mixture. Their deoxygenation was performed at 340 °C under 4 MPa over sulfided supported catalysts (Mo/Al2O3, CoMo/Al2O3, NiMo/Al2O3) and on bulk catalysts (NiMoS).Under these operating conditions, the deoxygenation of decanoic acid involved production of C10 and C9 hydrocarbons, the latter being the major products obtained on promoted catalysts (CoMo and NiMo). Phenol deoxygenation led to the production of aromatic and naphthenes, the latter being the major products whatever the catalyst used. A strong inhibiting effect of acid on the transformation of phenol was highlighted, assigned to a competitive adsorption in favour of the acid.In order to break out support effect, bulk catalysts formed exclusively by NiMoS phase were synthesized in presence of differents agents (ionic liquid, formamide, water). Activity and selectivity of these catalysts were measured in deoxygenation of two oxygenated model compounds (decanoic acid and phenol). For both oxygenated model compounds, the catalyst synthesized in water presented the highest activity.
|
4 |
Activité et stabilité de phases sulfures pour l’hydrotraitement d’huiles végétales / Activity and stability of sulfur catalytic phases for hydrotreating of vegetable oilsRuinart de Brimont, Mathias 13 October 2011 (has links)
En combinant expérimentations et calculs ab initio, nous proposons une étude rationnelle des mécanismes de désoxygénation de molécules modèles pertinentes (heptanoate d'éthyle et heptanal) afin de fournir des guides pour définir des systèmes catalytiques optimaux pour l'hydrotraitement de matières premières renouvelables (huiles végétales, graisses animales). L'hydrotraitement d'huiles végétales, par la réaction de désoxygénation, est une voie alternative à la transestérification et peut être envisagée pour obtenir une base gazole de haute qualité. La transformation des composés oxygénés modèles a été étudiée sous une pression totale de 1.5 MPa, à une température de 523 K, dans un réacteur à lit fixe en présence de différents sulfures de métaux de transition massiques (SMT). Cette étude a mis en évidence l'influence de la nature phase sulfure sur la sélectivité des voies de désoxygénation (hydrodésoxygénation (HDO) et/ou décarbonylation/ décarboxylation (DCO)) ainsi que la réactivité particulière du sulfure de rhodium lors de la transformation de l'heptanoate d'éthyle. À l'inverse, quelle que soit la phase sulfure utilisée, la transformation de l'heptanal suit principalement la voie HDO. Dans nos conditions réactionnelles, l'heptanal a été identifié comme un intermédiaire de cette voie de désoxygénation. L'effet promoteur du cobalt et du nickel sur l'activité du sulfure de molybdène monométallique a été observé lors de la transformation de l'heptanal. La relation entre les activités en désoxygénation et en HDO et l'énergie de liaison métal-soufre (E(MS)) calculée ab initio des solides suit une courbe en volcan. Le sulfure mixte NiMoS (0.43), qui présente une E(MS) intermédiaire (127 kJ.mol-1), est le SMT le plus actif pour les deux réactions. Le catalyseur bimétallique CoMoS (0.1) présente la sélectivité HDO/DCO la plus élevée. À l'aide des résultats catalytiques et de calculs ab initio, deux mécanismes réactionnels sont proposés pour les voies de réactions HDO et DCO / By combining well defined experiments and density functional theory (DFT) calculations, we propose a rational understanding of the deoxygenation mechanisms of relevant oxygenate molecules (ethyl heptanoate and heptanal) so as to provide guides to define optimal catalytic systems for the hydrotreating of renewable feedstocks (vegetable oils, animals fats). The hydrotreatment of vegetable oils, with the deoxygenation reaction, is an alternative route to transesterification and can be used to obtain high quality diesel. The transformation of oxygenated model compounds was studied under a total pressure of 1.5 MPa, at 523 K, in a fixed bed reactor over various unsupported transition metal sulfide catalytic phases (TMS). Results have shown the influence of the sulfide phase on the selectivity for deoxygenation reaction (hydrodeoxygenation (HDO) and/or decarbonylation/ decarboxylation (DCO)) and the specific reactivity of the rhodium sulfide for the transformation of ethyl heptanoate. The study of the transformation of heptanal shows the reaction of deoxygenation is preferentially following the HDO pathway over all the catalysts. In our reaction conditions, heptanal was identified as a reaction intermediate of this deoxygenation pathway. The promoting effect of cobalt and nickel on the activity of monometallic molybdenum sulphide was observed for the transformation of heptanal. The relation between the deoxygenation and HDO rates and the ab initio calculated sulphur-metal bond energy E(MS) in the bulk TMS is following a volcano curve. Bimetallic sulfide NiMoS (0.43), with an intermediate E(MS) (127 kJ.mol-1), is found as the most active TMS for both reactions. The maximum of the HDO/DCO selectivity is obtained for the mixed catalyst CoMoS (0.1). Thanks to catalytic results and ab initio calculations, two reaction pathways are proposed for HDO and DCO reactions
|
Page generated in 0.1092 seconds