• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 87
  • 30
  • 5
  • Tagged with
  • 117
  • 46
  • 33
  • 29
  • 29
  • 24
  • 21
  • 18
  • 17
  • 16
  • 14
  • 14
  • 14
  • 12
  • 11
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
81

Fluides actifs - Interactions et dynamiques collectives dans les suspensions phorétique / Active fluids - Interactions and collective dynamics in phoretic suspensions

Varma, Akhil 14 November 2019 (has links)
La phorèse est un mécanisme physico-chimique par lequel certains colloïdes microscopiques dérivent à travers les gradients d'un champ de concentration de soluté dans un fluide. Ce mécanisme est exploité par des particules autophorétiques, ou colloïdes actifs chimiquement, pour auto-propulser. Ces particules influencent les mouvements de leurs voisines par le biais d'interactions chimiques et hydrodynamiques et sont donc étudiées pour leur comportement collectif. La modélisation de ces interactions a fait l'objet de recherches approfondies au cours des dernières années, à la fois d'un point de vue physique pour comprendre les mécanismes précis des interactions, et d'un point de vue expérimental pour expliquer les observations de la formation de structures cohérentes à grande échelle. Cependant, une modélisation exacte de ces suspensions actives est difficile en raison des interactions à grand nombre de particules. Jusqu'à présent, la plupart des modèles proposés reposent sur la superposition d'approximations de champ lointain pour les signatures chimiques et hydrodynamiques de chaque particule, qui ne sont valides que de manière asymptotique dans la limite de suspensions très diluées. Un cadre analytique systématique et unifié basé sur la méthode classique de réflexion (MoR) est développé ici pour les problèmes de Laplace et de Stokes afin d'obtenir les interactions entre particules phorétiques et les vitesses résultantes avec un ordre de précision arbitraire en terme du rapport du rayon et de la distance typique entre deux particules voisines.Un système comprenant uniquement des particules autophorétiques homogènes et isotropes chimiquement et géométriquement est ensuite considéré en détail. On sait que de telles particules isotropes ne peuvent se propulser seules; cependant, en présence d'autres particules identiques, la symétrie du champ de concentration est brisée et les particules forment spontanément des agrégats ou clusters denses. De manière remarquable, ceux-ci peuvent s'auto-propulser si leur arrangement est présente une asymétrie. Ce résultat identifie donc une nouvelle voie pour briser la symétrie du champ de concentration et ainsi générer un mouvement, qui ne repose pas sur une conception anisotrope des particules individuelles, mais sur les interactions collectives de particules actives identiques et homogènes. Un argument pour l'origine de ce comportement auto-propulsif des clusters, basé sur la MoR, est proposé. De plus, en utilisant des simulations numériques complètes combinées à un modèle théorique réduit, nous caractérisons les propriétés statistiques de l'autopropulsion. / Diffusiophoresis is a physico-chemical mechanism by which certain microscopic colloids drift through gradients of a solute concentration field in a fluid. This mechanism is exploited by autophoretic particles, which are chemically active synthetic colloids, to achieve self-propulsion. These particles influence each others' motion through chemical and hydrodynamic interactions and are hence known to exhibit collective behaviour. Modeling these interactions is a subject of intense research over the past decades, both from a physical perspective to understand the precise mechanisms of the interactions, as well as from an experimental point of view to explain the observations of formation of coherent large-scale structures. However, an exact modeling of is difficult due to multi-body interactions and surface effects. Most efforts so far rely on the superposition of far-field approximations for each particle's signature, which are only valid asymptotically in the dilute suspension limit. A systematic and unified analytical framework based on the classical Method of Reflections (MoR) is developed here for both Laplace and Stokes' problems to obtain the multi-body interactions and the resulting velocities of phoretic particles, up to any order of accuracy in the radius-to-distance ratio of the particles.A system comprising only of chemically- and geometrically-isotropic autophoretic particles is then considered in detail. It is known that such isotropic particles cannot self-propel in isolation; however, in the presence of other identical particles, the symmetry of the concentration field is broken and the particles spontaneously form close packed clusters. Remarkably, these clusters are observed to self-propel based on their geometric arrangement. This result thus identifies a new route to symmetry-breaking for the concentration field and to self-propulsion, that is not based on an anisotropic design, but on the collective interactions of identical and homogeneous active particles. An argument for origin of this self-propulsive behaviour of clusters is made based on MoR. Furthermore, using full numerical simulations and theoretical model for clustering, we characterize the statistical properties of self-propulsion of the system.
82

Modulation of wall-bounded turbulent flows by large particles : effect of concentration, inertia, and shape / Modification des écoulements turbulents avec paroi, par les particules de taille finie : effet de leur concentration, forme et inertie

Wang, Guiquan 26 September 2017 (has links)
L’effet des inclusions sur la turbulence de l’écoulement est un élément clé à comprendre afin de maîtriser le transport de milieux dispersés, dans le domaine du génie pétrolier, environnemental, agroalimentaire, génie de la réaction chimique ou transformation du solide. Les expériences de Matas et al. (PRL, 2003) ont mis en évidence un effet non monotone des particules isodenses (de densité égale à celle du fluide) sur la transition laminaire-turbulent, cet effet dépendant de la taille des particules et de leur concentration dans la suspension. Une petite quantité de particules de taille finie s’est avérée suffisante pour diminuer considérablement le seuil de transition laminaire turbulent. Nous avons utilisé des simulations numériques, basées sur une approche de type “Force Coupling Method” afin de comprendre cet effet. Les domaines de simulations étaient choisis pour accommoder le minimum de structures cohérentes suffisantes pour entretenir la turbulence. Nous avons particulièrement étudié la corrélation entre le comportement instationnaire de l’écoulement et la distribution instantanée de particules, en fonction de la configuration de l’écoulement (Couette plan ou écoulement en canal), de la forme des particules ainsi que leur inertie et concentration. Dans un écoulement de Couette plan turbulent, la contrainte pariétale est augmentée en présence des particules. Les profiles (dans la direction normale aux parois) de vitesse moyenne et des contraintes de Reynolds ne sont pas significativement modifiés en présence des particules, si la viscosité du fluide est remplacée par la viscosité effective de la suspension dans le calcul du nombre de Reynolds de l’écoulement. Par contre l’analyse temporelle et modale des fluctuations de l’écoulement suggère que les particules modifient légèrement le cycle de régénération de la turbulence, à travers l’augmentation d’énergie à petites échelles. En effet, la forme des streaks et le caractère intermittent de l’écoulement sont impactés par la présence des particules, surtout quand elles sont inertielles (de densité supérieure à celle du fluide). Ces résultats ont été publiés dans le journal Physical Review F (Wang et al., 2017). En outre, nous avons montré qu’à fraction volumique égale, les propriétés d’écoulement turbulent des suspensions de particules sphéroïdales de rapport de taille compris entre 0.5 et 2, sont similaires à celles des suspensions de particules sphériques. Le transfert de particules entre les différentes structures cohérentes de l’écoulement est analysé à la fin de la thèse. Néanmoins dans un écoulement en canal, les particules iso denses augmentent l’intensité des contraintes de Reynolds dans le plan transverse. Nous montrons que par leur concentration préférentielle dans les structures cohérentes à côté des parois (les éjections), elles influencent significativement le cycle de régénération en agissant sur tous les processus à la fois linéaires et non linéaires du cycle: la formation des streaks, puis leur rupture et la régénération des vortex alignés avec l’écoulement. La diminution du seuil de transition est la conséquence directe de cette modulation du cycle. / The effect of particles on turbulence is a key phenomenon in many practical industrial applications encountered in petroleum engineering, chemical reactors and food or solid processing (transport of slurries in pipes, reactive fluidized beds, and pneumatic transport of particles), environmental engineering (such as sand storm and Particulate Matter (PM) Pollution), and biological fluid mechanics (e.g. drug delivery in blood flow and inhaled particles through the respiratory system). The experiments of Matas et al. (PRL, 2003) have highlighted the non-monotonous effect of neutrally buoyant particles on the laminar-turbulent flow transition, depending on the particle-to-pipe size ratio and on the suspension volumetric concentration. A small amount of finite size particles allowed sustaining the turbulent state and decreasing the transition threshold significantly. The complex mechanisms related to particle flow interactions are often difficult to elucidate experimentally. During the last 4 decades, direct numerical simulations have proven to be a powerful tool for understanding the features of single-phase turbulent flows. Currently, it starts to play an important role in the investigation of suspension flows as well. Almost a decade after the experiments of Matas et al. (PRL, 2003), particle-resolved numerical simulations are able to evidence that at moderate concentration, particles have a significant impact on the unsteady nature of the flow, enhancing the transverse turbulent stress components and modifying the flow vortical structures (Loisel et al. Phys. Fluids, 2013; Yu et al. Phys. Fluids, 2013; Lashgari et al. PRL, 2015). In this work, we use particleresolved numerical simulations to understand the effect of finite sized particles on wall-bounded (pressure-driven or plane Couette) turbulent flows, slightly above the laminar-turbulent transition limit. We find that in turbulent Couette flow, wall-normal profiles of the flow velocity and Reynolds stress components reveal that there is no significant difference between single phase and two-phase flows at equivalent effective Reynolds number, except that the wall shear stress is higher for the two-phase flow. At concentration up to 10%, neutrally buoyant spherical particles have a negligible effect on both the intensity and intermittency of the Reynolds stress. However temporal and modal analysis of flow fluctuations, suggest that besides increasing small scale perturbation due to their rigidity, particles have an effect on the regeneration cycle of turbulence (streak formation, streak breakdown and streamwise vortex regeneration). Indeed, the shape of the streaks and the intermittent character of the flow (amplitude and period of oscillation of the modal fluctuation energy) are all altered by the particle presence, and especially by the inertial particles (Wang et al. Phys. Rev. Fluid, 2017). When the particle shape deviates from sphericity (spheroids with aspect ratios ranging between 0.5 and 2), the features of turbulent suspension flow are not significantly impacted. The transfer of particles between different coherent structures (along the regeneration cycle period) is analyzed at the end of the thesis. Nevertheless in channel flow, neutrally-buoyant spherical particles have a drastic impact on the regeneration cycle of turbulence, decreasing thereby the transition threshold. Particles enhance the intensity of the Reynolds stress although the frequency of burst events is decreased. Particles enhance the lift-up effect and act continuously within the buffer layer. Moreover, they increase the vorticity stretching, leading to smaller and more numerous wavy streaks for suspension flows compared to the single-phase configuration.
83

Génération et croissance des vagues à la surface d’un liquide visqueux sous l’effet du vent / Generation and growth of wind waves over a viscous liquid

Paquier, Anna 11 July 2016 (has links)
Bien qu'ayant suscité de nombreuses études sur le sujet, un certain nombre de questions à propos de la formation des vagues sous l'effet du vent restent sans réponse précise. Dans ma thèse, j'aborde ce problème selon une approche peu explorée : l'étude expérimentale de la déformation sous l'effet du vent de la surface d'un liquide fortement visqueux. En effet, contrairement à la majeure partie de la littérature sur le sujet, le liquide que j'utilise n'est pas de l'eau mais un liquide sensiblement plus visqueux. Indépendamment des questions fondamentales sous-jacentes, cela a en pratique l'avantage de simplifier le problème. En effet, du fait de la forte viscosité du liquide, l'écoulement dans le liquide reste laminaire et les perturbations de l'interface qui ne sont pas amplifiées ne peuvent se propager que sur une distance limitée. Pour observer ces déformations de l'interface liquide-air, j'ai développé un nouveau montage expérimental sur lequel a été mise en œuvre la méthode de visualisation Free Surface Synthetic Schlieren. Cette technique non intrusive a permis de mesurer avec une résolution micrométrique les amplitudes de déformations de la surface et d'accéder aux premières déformations à faible vitesse de vent. Dans un premier temps, les expériences furent conduites sur un liquide trente fois plus visqueux que l'eau. Grâce aux données expérimentales obtenues par FS-SS, deux régimes de déformation de l'interface liquide-air ont été mis en évidence. A vitesse de vent faible, l'interface est recouverte de "wrinkles", des perturbations de faible amplitude désorganisées spatialement et globalement alignées dans le sens de l'écoulement. Ces wrinkles peuvent être interprétés comme l'effet sur l'interface des fluctuations de pression de l'écoulement turbulent d'air. A plus forte vitesse, au-dessus d'une vitesse critique, apparaissent des vagues transverses quasi-parallèles entre elles et perpendiculaire à la direction du vent. Les distinctions entre les deux régimes ont été détaillées et les non-linéarités émergeant au-dessus du seuil ont aussi été étudiées. Par la suite, la viscosité du liquide a été changée sur une large gamme. Il ressort des expériences que les deux régimes de déformation de l'interface sous l'effet du vent peuvent être identifiés pour l'ensemble des viscosités parcourues. Suite à ces résultats, un modèle décrivant l'évolution de l'amplitude des wrinkles en fonction du vent et de la viscosité du liquide a été développé. / Despite numerous studies on the subject, the development of waves under the action of wind still retains a certain number of open questions. In my PhD, I approach this problem through a fairly uncommon angle: the experimental study of the deformation by wind of the surface of a highly viscous liquid. Indeed, contrary to the major part of the literature on the matter, the liquid I used is not water but a significantly more viscous liquid. Regardless of the fundamental underlying questions, this has the practical advantage of simplifying the problem. Indeed, due to the high viscosity of the liquid, the flow in the liquid stays laminar and the unamplified perturbations of the interface can only propagate over a limited distance. To observe these deformations at the liquid-air interface, I have developed a new experimental set-up upon which the Free Surface Synthetic Schlieren method of visualization was implemented. This non-intrusive technique allowed to measure with a micrometric accuracy the amplitude of the surface deformation and to access the first deformations at low wind velocity. First, experiments were conducted over a liquid thirty times more viscous than water. The experimental data obtained by FS-SS show two regimes of deformation of the liquid-air interface. At low wind velocity, the interface is populated with ``wrinkles'', small-amplitude streamwise spatially disorganized perturbations. These wrinkles can be interpreted as the effect on the interface of the pressure fluctuations in the turbulent wind. At higher windspeed, above a critical velocity, transverse waves appear with quasi-parallel crests perpendicular to the wind direction. The distinctions between the two regimes have been detailed and the nonlinearities emerging above the threshold have also been studied. Then, the viscosity of the liquid has been changed over a large range. It results from the experiments that the two regimes of surface deformation by wind can be identified for all the viscosities explored. Following these results, a model was developed to account for the evolution of the wrinkles' amplitude both with wind velocity and with viscosity.
84

Filtration and catalytic reaction in trickle beds : use of solid foam guard beds to mitigate fines plugging

Wardag, Alam Rahman Khan 18 April 2018 (has links)
La sensibilité des réactions catalytiques à la filtration et le dépôt simultané de fines dans les réacteurs à lit ruisselant ont été évaluées au moyen de l'hydrogénation catalytique de l'a-méthylstyrène présent dans des suspensions diluées de kaolin dans du kérosène. Nous avons observé une corrélation négative entre la conversion catalytique et l'ampleur du dépôt spécifique au sein du lit engendrant une étape supplémentaire de transfert de masse au travers du dépôt en croissance sur les collecteurs. La sévérité de la résistance au transfert de masse est sensible à la compaction du dépôts autour des collecteurs qui est influencée par l'importance des vitesses superficielles de gaz. En outre, les pertes irréversibles observées concernant l'activité du catalyseur ont été attribuées, après avoir débarrassé le catalyseur de son dépôt, à une perte de sites actifs par le piégeage de fines dans les microporostiés du catalyseur. L'accumulation de fines dans le lit de catalyseur a été notablement réduite par l'adjonction en amont du lit de modules à base de mousses inorganiques (d'alumine ou de carbure de silicium) à haute porosité et faisant office de filtres de garde. Des études hydrodynamiques ont été réalisées avec et sans les blocs de mousse pour évaluer leur rôle sur la répartition de la suspension, la réduction du dépôt spécifique et la chute de pression dans le lit ruisselant. Il a été constaté que l'efficacité de capture par les blocs de mousse dépend de la connectivité et du degré d'ouverture des cellules dans les mousses ainsi que de la nature physico-chimique des matériaux constitutifs. Le nombre de modules de mousse a affecté la réduction des dépôts spécifiques et la chute de pression dans le lit. Ceci indique une possibilité de prolonger la durée de vie des réacteurs d'hydrotraitement à lit ruisselant à l'aide de lits de garde à base de mousse.
85

Interactions hydrodynamiques lors du transport de particules en fluide newtonien et non newtonien

Despeyroux, Antoine 20 October 2011 (has links) (PDF)
Ce mémoire est consacré à l'étude des effets des interactions hydrodynamiques sur le mouvement et le transport des particules sphériques et cylindriques dans les fluides non newtoniens. Des résultats importants ont été obtenus pour expliquer la physique des suspensions en fluide non newtonien. Le modèle non newtonien choisi est celui d'Ostwald car il décrit bien les effets de rhéofluidification et de rhéoépaississement qui caractérisent la plupart des fluides non newtoniens. Le premier résultat a été de montrer comment l'indice de fluidité affecte le comportement des suspensions par le biais de la longueur d'écran hydrodynamique autour de chaque particule. Ceci nous a permis de donner les bonnes valeurs de la traînée subie par chaque particule en milieu infini, et de montrer l'apparition du paradoxe de Whitehead dans le cas de la sphère à partir de n=2 et de Stokes dans le cas du cylindre à partir de n=1. Lorsque n est voisin de ces valeurs critiques, la détermination des forces hydrodynamiques devient très sensible à l'inertie. Le deuxième résultat important pour l'industrie de l'injection des matériaux composites, a été de montrer par une méthode inverse que les interactions hydrodynamiques pouvaient induire un retard plus ou moins important par rapport au cas newtonien dans le transport de particules. Le troisième résultat important pour l'analyse des processus d'agrégation de particules sphériques ou cylindriques a été obtenu dans le cas d'une particule sphérique ou cylindrique en sédimentation vers un plan fixe. Un calcul asymptotique dans le cas non newtonien en régime de lubrification, comparé avec succès à celui obtenu numériquement par la méthode de maillage dynamique, nous a permis d'obtenir les lois d'évolution de la force subie par ces particules entrant en contact avec un plan. Ces derniers résultats trouvent une application dans l'utilisation des machines dynamiques à force de surface dans le cadre de la nanorhéologie.
86

Réponse biologique de cellules animales à des contraintes hydrodynamiques : simulation numérique, expérimentation et modélisation en bioréacteurs de laboratoire / Biological response of animal cell to hydrodynamic stresses : numerical simulation, experimentation and modelling in bench-scale bioreactors

Barbouche, Naziha 13 November 2008 (has links)
La réponse globale de cellules animales à des contraintes hydrodynamiques lors de leur culture en suspension dans des réacteurs agités a été étudiée grâce à une approche intégrative couplant les outils du génie biochimique à ceux de la mécanique des fluides numérique. En premier lieu, la description de l’hydrodynamique moyenne et locale de deux systèmes de culture agités de laboratoire, spinner et bioréacteur, a été réalisée. Puis, l'étude des cinétiques macroscopiques de cellules CHO cultivées en suspension, en milieu sans sérum et sans protéine, a été réalisée avec différentes vitesses d’agitation, pour évaluer l'impact de l'agitation sur les vitesses de croissance et de mort cellulaires, ainsi que de consommation des substrats et de production des métabolites et de l'interféron-gamma recombinant. Des caractérisations supplémentaires des cellules (apoptose, protéines intracellulaires) et de l'interféron ont également été réalisées. Les effets de l'intensification de l'agitation ont été représentés avec plusieurs corrélations globales reliant : (i) en milieu contenant du pluronic, l'intégrale des cellules viables au nombre de Reynolds, et la proportion de cellules lysées à la valeur moyenne de l'énergie de dissipation, <[epsilon]? (ii) en milieu sans pluronic, les vitesses spécifiques de croissance et de mort cellulaires à <[epsilon]. De plus, l'analyse par CFD de la distribution spatio-temporelle des contraintes indique que la lyse cellulaire, observée dans le réacteur aux conditions extrêmes d'agitation, serait plutôt liée à des valeurs locales très élevées de [epsilon], ainsi qu’à la fréquence d'exposition des cellules dans ces zones énergétiques. Un modèle hydro-cinétique original, couplant l’hydrodynamique locale aux cinétiques cellulaires de croissance et de mort, et basé sur l’intermittence de la turbulence permet la prédiction de la lyse massive observée en réacteur sous certaines conditions. Pour confirmer le fait que les effets liés à l'intensification de l'agitation sont bien le résultat d'une augmentation des contraintes hydrodynamiques, et non d'une amélioration du transfert d'oxygène, ce dernier a été mesuré et modélisé par couplage avec une simulation numérique de type Volume Of Fluid , concluant en une absence de limitation d'oxygène. Enfin, la conception, le dimensionnement et la caractérisation hydrodynamique d'un réacteur innovant de type Couette-Taylor, sont proposées pour la mise en œuvre de cultures perfusées dans un environnement hydrodynamique mieux contrôlé / The global response of animal cells to hydrodynamic stress when cultivated in suspension in stirred tank reactors was studied. To do this, an integrative approach coupling biochemical engineering and fluid mechanics tools were used. First, the description of the global and local hydrodynamics of two bench-scale agitated reactors, a spinner flask and a bioreactor, was carried out. Then, macroscopic kinetics of CHO cells cultivated in a serum and protein-free medium were obtained at various agitation rates, in order to evaluate the impact of agitation on cellular growth and death, as well as substrates consumption and metabolites and recombining IFN-[gamma] production. IFN-[gamma] and cells physiological state were more precisely characterised by glycosylation, apoptosis state and intracellular proteins measurements. The effects of the agitation increase were represented by several global correlations that related: (i) in a medium containing Pluronic F68, the Integral of the Viable Cells Density to the Reynolds number, and the proportion of lysed cells with the average value of energy dissipation rate <[epsilon]? (ii) in a medium without pluronic, specific cell growth and death rates to <[epsilon]. Moreover, CFD analysis of the stress distribution indicated that the cellular lysis observed in the bioreactor at the highest agitation rate, would be related to very high local values of [epsilon], and to the exposure frequency of the cells in these energetic zones. An original hydro-kinetic model based on the intermittency of turbulence and coupling the local hydrodynamics with cell growth and death kinetics, allowed the prediction of the massive cell lysis observed in the bioreactor under some mixing conditions. To decouple shear stress effects from oxygen transfer improvement, the oxygen transfer coefficient was experimentally measured and modelled using a Volume Of Fluid numerical simulation. Our results indicated the absence of an oxygen limitation, which confirmed that this cell response resulted from the hydrodynamic stress increase alone. Lastly, an innovative continuous and perfused Couette-Taylor reactor, allowing a better-controlled hydrodynamic environment was designed and sized. Its hydrodynamic description was carried out using CFD calculations
87

Experimental methodologies to explore 3D development of biofilms in porous media / Méthodologies expérimentales pour l'étude du développement 3D de biofilms en milieux poreux

Larue, Anne 27 March 2018 (has links)
Les biofilms sont des communautés microbiennes se développant sur des interfaces, en particulier solide-liquide, où les micro-organismes sont enrobés dans une matrice polymérique auto-sécrétée. Le mode de vie sous forme de biofilm est prédominant dans les milieux naturels (par e.g. la texture glissante des fonds de rivières, les dépôts visqueux des canalisations et la plaque dentaire) et confère aux micro-organismes un environnement propice à leur développement. Ceci est particulièrement vrai dans des milieux poreux qui, de part leur important ratio surface/volume, constituent des substrats favorables à la colonisation. Le cadre des biofilms en milieux poreux forme une complexité multi-physique d’ordre élevée dans laquelle interagissent des mécanismes physiques, chimiques et biologiques multi-échelles encore mal compris et très partiellement maîtrisés. La rétroaction entre l’écoulement, la distribution spatiale des microorganismes et le transport de nutriments (par diffusion et advection) en est un exemple. Le développement de biofilms en milieux poreux est au centre de multiples procédés d’ingénierie, tel que les bio-filtres, la bio-remédiation des sols, le stockage de CO2, et de problèmes médicaux comme les infections. Un verrou significatif à l’avancée des connaissances est la limitation des techniques exploratoires en métrologie et imagerie dans des milieux opaques. L’objectif principal de cette thèse est la proposition de méthodologies expérimentales reproductibles et robustes permettant l’étude de biofilms en milieux poreux. Un dispositif expérimental en conditions physiques et biologiques contrôlées est proposé. De plus, un protocole d’imagerie 3D basé sur la micro-tomographie à rayons X (MT RX) associé à l’utilisation d’un nouvel agent de contraste (sulfate de baryum et gel d’agarose), est validé afin de quantifier la distribution spatiale du biofilm. Dans un premier temps, la méthodologie MT RX est comparée à une des méthodes les plus utilisées pour la visualisation de biofilms : la microscopie photonique par fluorescence, ici biphotonique (MBP). Cette comparaison est réalisée pour des biofilms de Pseudomonas Aeruginosa développés dans des capillaires transparents en verre, ce qui facilite l’application des deux modalités. Dans un second temps, une étude des incertitudes liées à l’imagerie est réalisée à travers l’évaluation de différentes métriques (volume, surfaces 3D, épaisseurs) pour un fantôme d’imagerie et trois algorithmes de segmentation différents. Les analyses quantitatives montrent que le protocole de MT RX permet une visualisation du biofilm avec une incertitude d’environ 17%, ce qui est comparable à la MBP (14%). La reproductibilité et la robustesse de la méthodologie MT RX est démontrée. La troisième étape du travail de recherche permet d’aboutir au développement d’un bioréacteur innovant élaboré par fabrication additive et contrôlé par un système micro-fluidique de haute précision. Le dispositif expérimental que nous avons conçu permet de suivre en temps réel l’évolution des propriétés de transport (perméabilité effective), les concentrations en O2 et le détachement de biofilm par spectrophotométrie ; ceci pour des conditions hydrodynamiques contrôlées. Notre méthodologie permet d’étudier l’influence de paramètres biophysiques sur la colonisation du milieu poreux, par exemple l’influence du débit ou de la concentration de nutriments sur le développement temporel du biofilm. En conclusion, ce travail de thèse propose une méthodologie expérimentale reproductible et robuste pour la croissance contrôlée et l’imagerie 3D de biofilms en milieux poreux en apportant la versatilité du contrôle de la micro-architecture du milieu, de l’écoulement et des conditions biochimiques de culture. A notre connaissance, l’approche scientifique suivie et les dispositifs expérimentaux associés constitue la méthodologie la plus complète à ce jour, pour l’étude de biofilms en milieu poreux. / Biofilms are microbial communities developing at the interface between two phases, usually solidliquid, where the micro-organisms are nested in a self-secreted polymer matrix. The biofilm mode of growth is predominant in nature (for e.g. the slimy matter forming on rocks at river bottoms, the viscous deposit in water pipes or even dental plaque) and confers a suitable environment for the development of the micro-organisms. This is particularly the case for porous media which provide favourable substrates given their significant surface to volume ratio. The multi-physical framework of biofilms in porous media is highly complex where the mechanical, chemical and biological aspects interacting at different scales are poorly understood and very partially controlled. An example is the feedback mechanism between flow, spatial distribution of the micro-organisms and the transport of nutrient (by diffusion and advection). Biofilms developing in porous media are a key process of many engineering applications, for example biofilters, soil bio-remediation, CO2 storage and medical issues like infections. Progress in this domain is substantially hindered by the limitations of experimental techniques in metrology and imaging in opaques structures. The main objective of this thesis is to propose robust and reproducible experimental methodologies for the investigation of biofilms in porous media. An experimental workbench under controlled physical and biological conditions is proposed along with a validated 3D imaging protocol based on X-ray micro-tomography (XR MT) using a novel contrast agent (barium sulfate and agarose gel) to quantify the spatial distribution of the biofilm. At first, the XR MT-based methodology is compared to a commonly used techniques for biofilm observation: one or multiple photon excitation fluorescence microscopy, here two-photon laser scanning microscopy (TPLSM). This comparison is performed on Pseudomonas Aeruginosa biofilms grown in transparent glass capillaries which allows for the use of both imaging modalities. Then, the study of uncertainty associated to different metrics namely volume, 3D surface area and thickness, is achieved via an imaging phantom and three different segmentation algorithms. The quantitative analysis show that the protocol enables a visualisation of the biofilm with an uncertainty of approximately 17% which is comparable to TPLSM (14%). The reproducibility and robustness of the XR MT-based methodology is demonstrated. The last step of this work is the achievement of a novel bioreactor elaborated by additive manufacturing and controlled by a high-performance micro-fluidic system. The experimental workbench that we have designed enables to monitor in real-time the evolution of transport properties (effective permeability), O2 concentrations and biofilm detachment by spectrophotometry, all under controlled hydrodynamical conditions. Our methodology allows to investigate the influence of biophysical parameters on the colonisation of the porous medium, for example, the influence of flow rate or nutrient concentration on the temporal development of the biofilm. In conclusion, the thesis work proposes a robust and reproducible experimental methodology for the controlled growth and 3D imaging of biofilms in porous media; while providing versatility in the control of the substrate’s micro-architecture as well as on the flow and biochemical culture conditions. To our knowledge, the scientific approach followed, along with the experimental apparatus, form the most complete methodology, at this time, for the study of biofilms in porous media.
88

Etude numérique et modélisation des instabilités hydrodynamiques dans le cadre de la fusion par confinement inertiel en présence de champs magnétiques auto-générés / Numerical study and modeling of hydrodynamic instabilities in the context of inertial confinement fusion in the presence of self-generated magnetic fields

Levy, Yoann 13 July 2012 (has links)
Dans le cadre de la fusion par confinement inertiel, nous présentons une analyse des effets du champ magnétique sur le développement linéaire des instabilités de Richtmyer-Meshkov, en magnétohydrodynamique idéale d’une part, et de Rayleigh-Taylor au front d’ablation, dans les phases d’accélération et de décélération d’autre part.A l’aide d’un code linéaire de perturbation, nos simulations mono mode nous permettent de confirmer, pour l’instabilité de Richtmyer-Meshkov, la stabilisation apportée par la composante du champ magnétique parallèle au vecteur d’onde des perturbations de l’interface, dont l’amplitude oscille au cours du temps. Nous montrons que la prise en compte de la compressibilité n’apporte pas de changements significatifs par rapport au modèle impulsionnel incompressible existant dans la littérature. Dans nos simulations numériques bidimensionnelles, en géométrie plane, de l’instabilité de Rayleigh-Taylor dans la phase d’accélération, nous prenons en compte le phénomène d’auto-génération de champ magnétique induite par cette instabilité. Nous montrons qu’il est possible d’atteindre des valeurs de champ de l’ordre de quelques teslas et que la croissance de l’amplitude des perturbations transite plus rapidement vers un régime de croissance non-linéaire avec, notamment, un développement accru de la troisième harmonique. Nous proposons également une adaptation d’un modèle existant, étudiant l’effet d’anisotropie de conductivité thermique sur le taux de croissance de l’instabilité de Rayleigh-Taylor au front d’ablation, pour tenter de prendre en compte les effets des champs magnétiques auto-générés sur le taux de croissance de l’instabilité de Rayleigh-Taylor. Enfin, dans une étude numérique à deux dimensions, en géométrie cylindrique, nous analysons les effets des champs magnétiques auto-générés par l’instabilité de Rayleigh-Taylor dans la phase de décélération. Cette dernière étude révèle l’apparition de champs magnétiques pouvant atteindre plusieurs milliers de teslas sans pour autant affecter le comportement de l’instabilité de Rayleigh-Taylor. / In the context of inertial confinement fusion we investigate effects of magnetic fields on the development in the linear regime of two hydrodynamic instabilities: Richtmyer-Meshkov instability using ideal magnetohydrodynamics and ablative Rayleigh-Taylor instability in both acceleration and deceleration stages.Direct numerical simulations with a linear perturbation code enable us to confirm the stabilizing effect of the component of the magnetic field along the perturbations wave vector. The amplitude doesn’t grow linearly in time but experiences oscillations instead. The compressibility taken into account in the code does not affect predictions given by an already existing impulsive and incompressible model.As far as Rayleigh-Taylor instability is concerned we study the effects of self-generated magnetic fields that arise from the development of the instability itself. In the acceleration stage we perform two dimensional simulations in planar geometry. We show that magnetic fields of about 1T can be generated and that the instability growth transits more rapidly into nonlinear growth with the enhancement of the development of the third harmonic. We also propose an adaptation of an existing model that aims at studying thermal conductivity anisotropy effects, to take into account the effects of the self-generated magnetic fields on the Rayleigh-Taylor instability growth rate.Finally, in the deceleration stage, we perform two dimensional simulations in cylindrical geometry that take into account self-generation of magnetic fields due to the instability development. It reveals magnetic fields of about several thousands of teslas that are not strong enough though to affect the instability behavior.
89

An entropic approach to magnetized nonlocal transport and other kinetic phenomena in high-energy-density plasmas / Une approche entropique au transport non local et aux autres phénomènes cinétiques dans les plasmas à hautes densités d'énergie

Del Sorbo, Dario 14 December 2015 (has links)
Les simulations hydrodynamiques pour la physique de haute densité d'énergie ainsi que pour la fusion par confinement inertiel exigent une description détaillée de flux d'énergie. Le mécanisme principal est le transport électronique, qui peut être un phénoméne non local qui doit être décrit avec des modèles de Fokker-Planck, stationnaires et simplifiés dans les codes hydrodynamiques à grande échelle. Mon travail thèse est consacré au développement d'un nouveau modèle de transport non local basé sur l'utilisation d'une méthode de fermeture entropique pour la résolution des premiers moments de l'équation de Fokker-Planck agrémentée d'un opérateur de collision dédié. Une telle fermeture permet une bonne résolution des fortes anisotropies de la fonction de distribution électronique dans les régimes où le développement d'instabilités électrostatiques à petite échelle le requiert. Ce modèle aux moments (M1) est comparé avec succès au modèle de Schurtz, Nicolaï et Busquet (SNB), référent dans le domaine du transport électronique non local. Ce modèle, basé sur l'hypothèse d'une faible anisotropie de la fonction de distribution sous-jacente induisant une relation de fermeture polynomiale (P1), utilise un opérateur de collision simplifié dont nous avons proposé une amélioration. Après avoir considéré plusieurs configurations typiques de transport de chaleur, nous avons montré que le modèle M1 ultidimensionnel peut prendre naturellement en compte des effets d'un plasmas magnétisés sur le transport électronique. De plus, ce modèle permet de calculer des fonctions de distribution utiles aux études cinétiques comme la stabilité du plasma dans la zone de transport. Nous confirmons avec notre modèle que le transport d'énergie électronique peut fortement modifier l'amortissement des ondes de Langmuir et des ondes acoustiques ; contrairement aux modèles non locaux simplifiés, M1 décrit les modifications de la fonction de distribution et l'amortissement des ondes du plasma. La structure du modèle permet également de prendre en compte naturellement des champs magnétiques autogénérés, qui jouent un rôle crucial dans des simulations multidimensionnelles. Ces champs magnétiques pourraient également être étudiés pour concentrer l'énergie dans les schémas d'ignition. Enfin, nous montrons que le modèle M1 reproduit les résultats de la théorie locale élaborée par Braginskii pour tous les niveau de magnétisation et propose de nouveaux résultats pour le régime non local. Ce travail constitue une première validation de l'utilisation des fermetures entropiques, dans les régimes de faibles anisotropies, qui va s'ajouter aux tests dans les régimes fortement anisotropes. / Hydrodynamic simulations in high-energy-density physics and inertial con nement fusion require a detailed description of energy uxes. The leading mechanism is the electron transport, which can be a nonlocal phenomenon that needs to be described with quasistationary and simplified Fokker-Planck models in large scale hydrodynamic codes. My thesis is dedicated to the development of a new nonlocal transport model based on a fast-moving-particles collision operator and on a first moment Fokker-Planck equation, simplified with an entropic closure relation. Such a closure enables a better description of the electron distribution function in the limit of high anisotropies, where small scale electrostatic instabilities could be excited. This new model, so called M1, is successfully compared with the well known nonlocal electron transport model proposed by Schurtz, Nicolaï and Busquet, using different collision operators, and with the reduced Fokker-Planck model, based on a small-anisotropies polynomial closure relation (P1). Several typical configurations of heat transport are considered. We show that the M1 entropic model may operate in two and three dimensions and is able to account for electron transport modifications in external magnetic fields. Moreover, our model enables to compute realistic electron distribution functions, which can be used for kinetic studies, as for the plasma stability in the transport zone. It is demonstrated that the electron energy transport may strongly modify damping of Langmuir and ion acoustic waves, while the simplified nonlocal transport models are not able to describe accurately the modifications of the distribution function and plasma wave damping. The structure of the M1 model allows to naturally take into account self-generated magnetic fields, which play a crucial role in multidimensional simulations. Moreover, magnetic fields could also be used for the focusing of energetic particles in alternative ignition schemes. The M1 model reproduces the results of the local transport theory in plasma, developed by Braginskii, in a broad range of degrees of magnetization and predicts new results in the nonlocal regime. This work constitutes a first validation of the entropic closure assumption in the weakly-anisotropic regime. It can be added to the existing tests, in the strongly-anisotropic regimes.
90

Simulation des interactions hydrodynamiques entre inclusions dans un métal liquide : établissement de noyaux d’agrégation dans les conditions représentatives du procédé de flottation / Simulation of hydrodynamic interactions between inclusions in liquid metal : determination of aggregation kernels in representative conditions of flotation process

Gisselbrecht, Matthieu 11 July 2019 (has links)
La propreté inclusionnaire reste un enjeu majeur en élaboration des métaux par voie liquide. La flottation, principal procédé retenu en métallurgie secondaire pour éliminer les particules d’inclusions, consiste à injecter des bulles de gaz au sein du réacteur. Lors de leur ascension, les bulles vont capter les plus grosses inclusions et favoriser la collision et l’agrégation des particules. Dans le but de quantifier les phénomènes influents à l’échelle des inclusions sur la dynamique d’agrégation entre deux inclusions à proximité des bulles, un modèle numérique 3D a été développé. L’écoulement local est modélisé par un cisaillement plan permanent et résolu par une méthode de Boltzmann sur réseau. Le couplage entre les particules et le fluide a été assuré par une méthode de frontière immergée permettant de calculer la perturbation hydrodynamique engendrée par la présence des particules et de mettre à jour les interactions entre particules pour leur suivi lagrangien. Les simulations numériques réalisées ont mis en évidence que les effets hydrodynamiques ont une influence non négligeable sur le comportement des inclusions. Des sections efficaces de collision ont pu être extraites, à partir desquelles ont été calculés des noyaux d’agrégation, données macroscopiques rendant compte des effets à petite échelle. Une première application de ce travail a été menée avec le calcul des fréquences d’agrégation d’un train de bulle dans un réacteur canal à partir de résultats de simulations DNS. Les noyaux d’agrégation ont également été exploités en vue de déterminer, à partir de résultats RANS de l’hydrodynamique d’une poche d’acier, l’évolution de la concentration d’inclusions par un bilan de population global. / Inclusion cleanliness remains a major challenge faced in process metallurgy in liquid phase. Flotation, the main process used in secondary metallurgy to remove inclusions, consists in injecting gas bubbles into the reactor. Rising gas bubbles entrap the biggest inclusions at their surface or in their wake. Besides, they promote collision and aggregation among particles. A 3D numerical model has been developed in order to quantify the roles of the prevailing phenomena on aggregation dynamics between inclusions in the vicinity of bubbles. At inclusion (mesoscopic) scale, the turbulent flow is locally modeled by a steady plane shear flow which is solved using a lattice-Boltzmann method. The coupling between both liquid and solid phases is ensured using an immersed boundary method. This method resolves the hydrodynamic perturbation induced by particles, and hence their interactions that are, in turn, used to update their Lagrangian tracking. The conducted numerical simulations bring out the influence of hydrodynamic effects on inclusion behavior. Collision cross sections have been determined from which ensuing aggregation kernels have been calculated. Such cross sections could provide macroscopic models to represent local particle dynamics. A first application of these results is presented to calculate aggregation frequencies in bubble swarms in a channel flow reactor that was simulated using DNS. Additionally, evolution of inclusion populations in molten steel has been determined from RANS simulation of a liquid steel ladle by means of a global population balance implementing the aggregation kernels determined in the present work.

Page generated in 0.072 seconds