• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 147
  • 28
  • 14
  • 11
  • 11
  • 7
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 272
  • 272
  • 59
  • 55
  • 46
  • 42
  • 41
  • 39
  • 38
  • 36
  • 33
  • 31
  • 31
  • 26
  • 23
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
121

INVESTIGATION OF HYDROGEN STORAGE IN IDEAL HPR INNER MATRIX MICROSTRUCTURE USING FINITE ELEMENT ANALYSIS

Gopalan, Babu 29 December 2006 (has links)
No description available.
122

Synthesis, Structure, And Characterization Of Rare Earth(Iii) Transition Metal Cyanides; Lanthanide(Ii) And Metallocene Amidotrihydroborates

Wilson, Duane C. 11 February 2009 (has links)
No description available.
123

STUDY OF HYDROGEN PRODUCTION IN SMALL AIRPORT : System selection and sizing

Taha, Mohammed January 2022 (has links)
Shifting from fossil fuels and moving towards sustainable and environmentally friendly fuels is vital to combat global warming. Hydrogen's high energy content and abundance on earth qualify it as one of the primary clean fuels, especially when produced from renewable resources. However, the way of clean hydrogen production and its environmental effect is still in the research and development stage. Hydrogen production, use as aviation fuel, storage, and transportation pose a technological challenge to overcome. This thesis project studied one of the aspects of hydrogen usage in the aviation sector by finding the optimum hydrogen production pathway in airports to fuel aircraft. Stockholm Skavsta airport was taken as a study case. Through literature review, hydrogen production methods were evaluated. Water electrolysis was found to be the optimum method to produce hydrogen for such application because of its production plant's simplicity and the possibility of having no emissions during the production when renewable energy is used. The optimum sizing and scheduling of hydrogen production and storage in Stockholm Skavsta airport were found for three electrolysis systems (Alkaline, PEM, and solid oxide) and three processes and storage types (compressed gas, cryo-compressed and liquefied). The study assessed three power sources to supply the necessary power for the production and storage ( grid supply, grid +solar system, and pure renewable solar PV +wind). The study considered 27 scenarios covering all the possible combinations of electrolysis systems, storage types, and power sources.   The levelized cost of hydrogen and carbon dioxide emissions was lower for the solar + grid scenarios, while grid powered scenarios gave the highest Levelized cost and carbon emissions. The pure renewable energy scenarios were nonfeasible due to the low renewable resources near the study case location. The optimum levelized cost of hydrogen was found to be between 2.93 - 2.44 Euro/kg, and the annual carbon dioxide emissions were in the range of 34731.1 to 20861.3 tons/year.  The PEM electrolysis showed the highest Levelized cost and moderate emissions, while the Alkaline electrolysis showed the highest carbon emissions and moderate cost. The lowest levelized cost and emissions were for the solid oxide electrolysis system. This thesis project succeeded in finding a pathway for inhouse hydrogen production for airports that might even be of interest being utilized in different sectors
124

Integration of Battery and Hydrogen Storage with a Grid-Connected Photovoltaic System in Buildings

Zhang, Yang January 2017 (has links)
The integration of Photovoltaic (PV) with buildings changes the previous electricity consumers into prosumers. The reduced PV subsidies and the grid stable operation requirements are pushing prosumers from direct exportation to self-consumption of the produced electricity. Electricity storage increases the self-consumption, while comes with higher investment. During the system planning stage, the benefits of storage should be clarified to prosumers. The storage type, the storage capacity and the system operation strategy should be determined at the same time.     This thesis dealt with a grid-connected PV-storage system and proposed an optimization method, which simultaneously determined the storage capacity and rule-based operation strategy parameters. This method eliminated the necessity of forecasting and could be easily implemented. A typical residential building in Sweden was taken as a case study. Different operation strategies as well as two storage technologies – battery storage and hydrogen storage – were compared.     For the battery storage system, the proposed battery hybrid operation strategy, which carries out the conventional operation strategy during warm months and the peak shaving strategy during cold months, provides the best performance in Self Sufficiency Ratio (SSR) and Net Present Value (NPV). For the hydrogen storage system, the hydrogen hybrid operation strategy outperforms other studied operation strategies under different scenarios, which have optimistic or pessimistic cost assumptions of the hydrogen storage system.     The comparison between hydrogen storage and battery storage suggests that battery storage has much better performance in SSR and NPV under the pessimistic cost scenario. Under the optimistic cost scenario, battery storage and hydrogen storage achieve comparable performance in SSR and NPV. However, hydrogen storage is more favorable when considering reducing the prosumer’s negative impact on the grid. / <p>QC 20170412</p>
125

Optimization of a decentralized energy system by implementing three different storage solutions for a small residential district in Ludvika, Sweden

Tayarani, Mathieu January 2022 (has links)
The acceleration towards achieving a low carbon society has raised many challenges in the energy sector. The existing systems, highly dependent on fossil fuels, are not sustainable and recommendations are made to accelerate the transition by using more renewable and low-carbon sources of energy. By being responsible for over 70 % of the greenhouse gas emissions, cities or districts have a major role to play in this transition and present a large potential for implementation of renewable energy systems. The optimization of those systems and a better use of energy are crucial to reduce emissions and reach carbon neutrality. This study evaluates the potential of the implementation of three storage solutions for a decentralized energy system in a residential cluster in Ludvika, Sweden, equipped with photovoltaics panels. The first solution includes stationary batteries, the second includes a hydrogen storage solution and the third offers a hybrid solution from the two previous storages. Simulations were conducted using two numerical tools with an hourly resolution.The first scenario was conducted using Spine modelling tools, and the other simulations, including the cost analysis, were conducted on Excel with the support of Visual Basic for Applications. The comparison between the three solutions showed that the stationary batteries, blessed with a higher efficiency, offers the best results. The autonomy of the site, initially at 19.1 %, was raised to 22.8 % due to the batteries, and the system allowed to save up to 9.6 MW∙h per year. The investment price of the battery system was the highest of the three solutions. However, the payback period is reached in 20 years, within the average lifespan of the batteries and 10 years shorter than with the other solutions. The results also showed that the benefits of implementing a hydrogen storage solution were not visible as the excess in the photovoltaic production was not enough to cover the energy demand in a long-term period.
126

Synthesis and characterization of rigid nanoporous hypercrosslinked copolymers for high surface area materials with potential hydrogen storage capabilities

Zhou, Xu 11 January 2011 (has links)
Hydrogen storage remains a major technological barrier to the widespread adoption of hydrogen as an energy source. Organic polymers offer one potential route to useful hydrogen storage materials. Recently, Frechet and his coworkers described a series of hypercrosslinked polymers with high surface area and studied their surface properties and hydrogen storage capacities. McKeown and his coworkers studied a class of materials termed Polymers of Intrinsic Microporosity (PIMs) which are also based on a "hypercrosslinked" concept. We enchained N-substituted maleimide and functionalized stilbene alternating copolymers into a "hypercrosslinked system" to achieve high rigidity, high surface areas, high aromatic content and good thermal stability. Hypercrosslinked copolymers of N-(3-methylphenyl)maleimide (3MPMI), 4-methyl stilbene (4MSTBB), vinylbenzyl chloride (VBC) and divinyl benzene (DVB) were synthesized. Scanning electron micrographs (SEM) show the copolymers are porous and some examples have shown surface areas over 1200 m²/g. We have also found the incorporation of 3MPMI and 4MSTBB improves the thermal stability and raises the glass transition temperature of the copolymer. However, the incorporation of 3MPMI and 4MSTBB decreases the hypercrosslinking density and therefore causes a decrease in the copolymer surface area. The systematic study of styrene (STR) – vinylbenzyl chloride (VBC) – divinyl benzene (DVB) networks indicates that a low density of chloromethyl groups leads to a decrease in surface area. Therefore, we are continuing to investigate other monomers, such as N-substituted maleimide and functionalized stilbene containing chloromethyl groups, in order to enhance thermal stability while maintaining surface area. In order to increase the enthalpy of hydrogen adsorption and thus raise the temperature of hydrogen storage, the monomer N,N-dimethyl-N',N'-diethyl-4,4'-diaminostilbene (4,4'DASTB-3MPMI) which contains electron donating groups was incorporated into hypercrosslinked polymer particles. Hypercrosslinked polymer (4,4'DASTB-3MPMI)1.0(VBC)98.5(DVB).50 exhibits a surface area of 3257 m²/g. / Master of Science
127

Application of the Transient Hot-Wire Technique for Measurement of Effective Thermal Conductivity of Catalyzed Sodium Alanate for Hydrogen Storage

Christopher, Michael Donald 24 August 2006 (has links)
Sodium alanate, or the Na-Al-H system, has been the focus of intense research over the past decade due to its ability to hold almost 5 wt% of hydrogen. In this research, the effective thermal conductivity, k, of a sample of titanium-doped sodium alanate is studied over a range of operating conditions pertinent to practical on-board hydrogen storage. A transient technique employing a platinum hot-wire is used to make the measurements. A cylindrical experimental apparatus was designed with the aide of a finite element model that was used to quantify the cylinder boundary effects. The apparatus dimensions were optimized based on the finite element results with the goal of minimizing measurement uncertainty and temperature rise during testing. Finite element results were also used to predict test times and current requirements. A sample of sodium alanate was obtained and loaded into the experimental apparatus which was enclosed in a pressure vessel with a controlled atmosphere. Effective thermal conductivity was measured as a function of pressure at the fully-hydrided and fully-dehydrided states. The results from the pressure-dependence investigation were compared to an existing study that utilized an alternate measurement technique. The results matched well qualitatively — the effective thermal conductivity was highly dependent on pressure, and was found to be significantly higher in the fully-dehydrided state. However, the results of this study were 20 to 30% lower than the existing available data. Additionally, an exploratory investigation used the PCI technique to study the effect of varying composition between the fully-hydrided state and the intermediate decomposition step at a relatively constant pressure. Effective thermal conductivity did not vary significantly over this range of compositions. / Master of Science
128

Polynuclear complexes as precursor templates for hierarchical microporous graphitic carbon: An unusual approach

Kobielska, Paulina A., Telford, Richard, Rowlandson, J., Tian, M., Shahin, Z., Demessence, A., Ting, V.P., Nayak, Sanjit 17 July 2018 (has links)
Yes / A highly porous carbon was synthesized using a coordination complex as an unusual precursor. During controlled pyrolysis, a trinuclear copper complex, [CuII3Cl4(H2L)2]·CH3OH, undergoes phase changes with melt and expulsion of different gases to produce a unique morphology of copper-doped carbon which, upon acid treatment, produces highly porous graphitic carbon with a surface area of 857 m2 g–1 and a gravimetric hydrogen uptake of 1.1 wt % at 0.5 bar pressure at 77 K. / EPSRC (EP/R01650X/1 for VPT, and EP/E040071/1 for MT) and the University of Bristol
129

The crystal chemistry and hydrogen storage properties of light metal borohydrides

Culligan, Scott D. January 2013 (has links)
This work examines various light metal borohydrides, particularly those formed from group II metals, with the aim of understanding their fundamental physical properties and improving their hydrogen storage ability. The structure of a new phase (γ) of Mg(BH<sub>4</sub>)<sub>2</sub> is reported and the decomposition is fully characterized in a combination of diffraction and thermogravimetric studies. The bulk properties of γ-Mg(BH<sub>4</sub>)<sub>2</sub> are compared to those of an SiO<sub>2</sub> isostructure and probed by various neutron scattering techniques. Negative thermal expansion is observed at low temperatures and the material absorbs up to 1.5 moles of hydrogen gas to form one of the most gravimetrically hydrogen-dense materials ever reported. The structural evolution of Ca(BH<sub>4</sub>)<sub>2</sub> under different synthetic conditions and external influences (e.g. temperature) is studied up until the material decomposes. The effects of various additives on group II metal borohydrides are also examined and the influence of each is justified by observing subtle structural changes in the mixed system via in situ synchrotron X-ray powder diffraction and <sup>11</sup>B NMR measurements.
130

Reactive hydride composites for efficient hydrogen energy storage

Nwakwuo, Christopher Chinedu January 2011 (has links)
Solid state chemical storage of hydrogen in metals offers promising advantages over compressed hydrogen gas and condensed liquid hydrogen, especially for mobile applications with respect to safety and energy efficiency. However, no single metal hydride simultaneously satisfies the essential performance criteria for onboard hydrogen storage namely, high gravimetric and/or volumetric energy density, fast kinetics and favorable thermodynamics. Recently, a breakthrough achievement was made by the development of reactive hydride composites in which two metal hydride systems (e.g. NaBH<sub>4</sub> and MgH<sub>2</sub>) are mixed together resulting in better sorption properties than the individual pure systems. In this approach, the formation of MgB<sub>2</sub> by exothermic reaction destabilizes the composite and consequently reduces the overall enthalpy and sorption temperature of the endothermic desorption reaction. In this work the thermodynamic and kinetic properties of reactions in 2NaH + MgB<sub>2</sub> + 4H<sub>2</sub> &harr; 2NaBH<sub>4</sub> + MgH<sub>2</sub> and 3NaH + MgB<sub>2</sub> + 4H<sub>2</sub> &harr; 2NaBH<sub>4</sub> + NaMgH<sub>3</sub> were established using multiple experimental techniques like volumetric measurements, ex-situ and in-situ X-ray diffraction, calorimetry, and especially electron microscopy. Under the applied experimental conditions of 50 bar hydrogen and 400 &deg;C during the hydrogenation of 2NaH + MgB2 and 0.1 bar hydrogen and 450 &deg;C during the dehydrogenation of 2NaBH<sub>4</sub> + MgH<sub>2</sub>, both reactions were kinetically limited and proceeded in multisteps. The absorption reaction was partial, being restricted by the unexpected formation of NaMgH<sub>3</sub> which limits the formation of NaBH<sub>4</sub> while the desorption reaction was complete and limited by the growth of MgB<sub>2</sub> through some intermediate complexes at the Mg/NaBH<sub>4</sub> interface where the intermediate phase forms a barrier to diffusion. Conversely, in the 3NaH + MgB<sub>2</sub> system, absorption in 100 bar hydrogen and 300 &deg;C was complete but slow, while in the 2NaBH<sub>4</sub> + NaMgH<sub>3</sub> system, complete desorption was achieved in multisteps under 0.1 bar hydrogen and 450 &deg;C. The formation of intermediate and stable complexes during these reactions poses a significant restraint to hydrogen sorption reactions. However, lower onset sorption temperatures have been established in these systems than in the pure compounds due to their simultaneous destabilization in the composite state. This study have demonstrated the complexity of desorption and absorption mechanisms in these composite systems and the difficulty of obtaining such reactions at low temperatures required for mobile applications. This understanding of the rate limiting reaction steps in reactive hydride composites provides the basis for further optimization of these materials for efficient hydrogen storage applications.

Page generated in 0.0626 seconds