• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 127
  • 58
  • 13
  • 11
  • 10
  • 3
  • 3
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 277
  • 277
  • 62
  • 58
  • 51
  • 49
  • 44
  • 40
  • 38
  • 31
  • 30
  • 29
  • 26
  • 25
  • 25
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Photocatalytic hydrogen evolution by using organic semiconductors nanoparticles

Sulaimani, Shahad 11 1900 (has links)
Abstract: With the worldwide dependence on non-renewable fossil fuels and increasing concerns over their impact on our planet through greenhouse gas emissions finding an alternative source of clean energy is a global imperative. The solar energy is one source of renewable energy resources, and It has the highest potential to contribute substantially to the future of carbon-free power needs. Solar to hydrogen has attracted much attention in the past decade due to its abundance and the spotlessness of hydrogen as fuel for energy usage. However, practically the requirements to convert solar energy to hydrogen, require a stable photocatalyst that’s able to operate efficiently over a wide range of the UV-VIS spectrum. Organic semiconductors have been widely used in hydrogen evolution due to their earth abundance, aqueous stability, and optical absorption that can be tuned to the UV-VIS spectrum. In chapter 3, The effect of different sacrificial regents on hydrogen evolution activity was systemically investigated by using poly(9,9-dioctylfluorene-alt-benzothiadiazole) (F8BT) nanoparticles dispersion large and small diameter with Sodium dodecyl sulfate (SDS) as stabilizer. Ascorbic acid (AA), diethylamine (DEA), triethanolamine (TEOA), and triethylamine mixed with methanol (TEA/MeOH) were chosen as sacrificial reagents. The results indicate that the large diameter give improved efficiency with ascorbic acid, and the small diameter improved activity in the presence of diethylamine. The results indicated that the comparison between different sacrificial reagents is difficult because, the conditions of every experiment is different to another, depending on (the type of photocatalyst used, solubility, activity..) so to date, there is no clear concurrence in which sacrificial reagent is better than others. Photocatalysts formed from a single organic semiconductor typically suffer from inefficient intrinsic charge generation, which leads to low photocatalytic activities. In chapter 4, To overcome this limitation, we have used BTR, O-IDTBR, and PC71BM in binary and tertiary heterojunction nanoparticles between non fullerene donors’ small molecules and fullerene acceptor. The resulting photocatalyst display unprecedentedly a high hydrogen evolution rate over 12000 μmolh-1g-1 under AM 1.5g illumination.
42

Catalyse supportée sur nanotubes de carbone / Catalysis supported on carbon nanotubes

Donck, Simon 15 October 2015 (has links)
Cette thèse porte sur la catalyse supportée sur nanotubes de carbone. Plusieurs aspects ont été étudiés, électrocatalyse pour la production d'hydrogène à partir d'eau, catalyse pour la synthèse organique et électrocatalyse de la réaction de réduction de l'oxygène. Différents catalyseurs ont été synthétisés à partir d'assemblages supramoléculaires de molécules amphiphiles autour de nanotubes de carbone ou d'adhésion de molécules polyaromatiques à la surface des nanotubes et ont impliqué l'utilisation de catalyseur moléculaire ou nanoparticulaire. L'utilisation de ces catalyseurs pour les différents types de réactions mentionnés plus haut ont abouti à des résultats intéressants. / This PhD thesis deals with the catalysis supported on carbon nanotubes. Several aspects have been studied such as electrocatalysis for hydrogen production form water, catalysis for organic synthesis and electrocatalysis of the oxygen reduction reaction. Many different catalysts have been synthesized based on supramolecular assembly of amphiphilic molecules around carbon nanotubes or assembly of polyaromatic molecules at the surface of the nanotubes. These catalysts are made of metallic complexes or metallic nanoparticles. These catalysts have been successfully used to perform the reactions mentioned above.
43

Studies on catalyst materials and operating conditions for ammonia decomposition / アンモニア分解における触媒材料及び動作条件の研究

Younghwan, Im 24 November 2021 (has links)
京都大学 / 新制・課程博士 / 博士(工学) / 甲第23578号 / 工博第4933号 / 新制||工||1770(附属図書館) / 京都大学大学院工学研究科物質エネルギー化学専攻 / (主査)教授 江口 浩一, 教授 陰山 洋, 教授 阿部 竜 / 学位規則第4条第1項該当 / Doctor of Philosophy (Engineering) / Kyoto University / DGAM
44

Hydrogen Sulfide Decomposition to Hydrogen via A Sulfur Looping Scheme: Sulfur Carrier Design and Process Development

Jangam, Kalyani Vijay 30 September 2022 (has links)
No description available.
45

Statistical optimisation of medium constituent variables for biogas production from N-acetylglucosamine by Clostridium beijerinckii and Clostridium paraputrificum

Owoh, Barnabas Chinyere January 2014 (has links)
Statistically based experimental designs were applied to optimise medium constituent for biogas production utilizing N-­‐acetylglucosamine as a carbon source for Clostridium beijerinckii and Clostridium paraputrificum. The important medium constituents influencing total biogas produced, identified by the Plackett and Burman method, were FeSO4.7H2O and initial pH for C. beijerinckii cultures whilst for C. paraputrificum cultures N-­‐acetylglucosamine, L-­‐ cysteine.HCl.H2O and MgCl2. A one factor L-­‐cysteine.HCl.H2O optimization design was applied to investigate the ideal concentration of L-­‐cysteine.HCl.H2O required to achieve an anaerobic environment for optimum C. beijerinckii total biogas production. The Method of Steepest Ascent was then employed to locate the optimal area of the significant medium variables. Using the Box-­‐behnken method, experimental results showed that there were significant linear effects of independent variables, N-­‐acetylglucosamine for C. beijerinckii cultures and for C. paraputrificum cultures N-­‐acetylglucosamine, L-­‐cysteine.HCl.H2O and MgCl2 on total biogas volume. Significant curvature or quadratic effects of N-­‐ acetylglucosamine and L-­‐cysteine.HCl.H2O were identified for C. paraputrificum cultures. There were no significant interaction effects between medium constituent variables on resulting biogas volume. The optimal conditions for the maximum volume of biogas produced for C. beijerinckii cultures were 21 g/l of N-­‐ acetylglucosamine, 0.1 g/l of FeSO4.7H2O and initial pH of 6.11 and for C. paraputrificum were 29 g/l of N-­‐acetylglucosamine, 0.27 g/l of L-­‐ cysteine.HCl.H2O and 0.4 g/l of MgCl2. Using this statistical optimization strategy, the total biogas volume from N-­‐acetylglucosamine utilization increased from 150 ml/l to 6533 ml /l in the C. beijerinckii cultures and 100 ml/l to 5350 ml/l in the C. paraputificum cultures. The maximum yield of bio-­‐hydrogen by C. paraputrificum from N-­‐acetylglucosamine was 2.55 mol of H2 / mol of N-­‐ acetylglucosamine and by C. beijerinckii was 2.43 mol of H2 / mol of N-­‐ acetylglucosamine.
46

Techno-Economic Study of CO<sub>2</sub> Capture from Natural Gas Based Hydrogen Plants<br><br>

Tarun, Cynthia January 2006 (has links)
As reserves of conventional crude oil are depleted, there is a growing need to develop unconventional oils such as heavy oil and bitumen from oil sands. In terms of recoverable oil, Canadian oil sands are considered to be the second largest oil reserves in the world. However, the upgrading of bitumen from oil sands to synthetic crude oil (SCO) requires nearly ten times more hydrogen (H<sub>2</sub>) than the conventional crude oils. The current H<sub>2</sub> demand for oil sands operations is met mostly by steam reforming of natural gas. With the future expansion of oil sands operations, the demand of H<sub>2</sub> for oil sand operations is likely to quadruple in the next decade. As natural gas reforming involves significant carbon dioxide (CO<sub>2</sub>) emissions, this sector is likely to be one of the largest emitters of CO<sub>2</sub> in Canada. <br> <br>In the current H<sub>2</sub> plants, CO<sub>2</sub> emissions originate from two sources, the combustion flue gases from the steam reformer furnace and the off-gas from the process (steam reforming and water-gas shift) reactions. The objective of this study is to develop a process that captures CO<sub>2</sub> at minimum energy penalty in typical H<sub>2</sub> plants. <br> <br>The approach is to look at the best operating conditions when considering the H<sub>2</sub> and steam production, CO<sub>2</sub> production and external fuel requirements. The simulation in this study incorporates the kinetics of the steam methane reforming (SMR) and the water gas shift (WGS) reactions. It also includes the integration of CO<sub>2</sub> capture technologies to typical H<sub>2</sub> plants using pressure swing adsorption (PSA) to purify the H<sub>2</sub> product. These typical H<sub>2</sub> plants are the world standard of producing H<sub>2</sub> and are then considered as the base case for this study. The base case is modified to account for the implementation of CO<sub>2</sub> capture technologies. Two capture schemes are tested in this study. The first process scheme is the integration of a monoethanolamine (MEA) CO<sub>2</sub> scrubbing process. The other scheme is the introduction of a cardo polyimide hollow fibre membrane capture process. Both schemes are designed to capture 80% of the CO<sub>2</sub> from the H<sub>2</sub> process at a purity of 98%. <br> <br>The simulation results show that the H<sub>2</sub> plant with the integration of CO<sub>2</sub> capture has to be operated at the lowest steam to carbon (S/C) ratio, highest inlet temperature of the SMR and lowest inlet temperatures for the WGS converters to attain lowest energy penalty. H<sub>2</sub> plant with membrane separation technology requires higher electricity requirement. However, it produces better quality of steam than the H<sub>2</sub> plant with MEA-CO<sub>2</sub> capture process which is used to supply the electricity requirement of the process. Fuel (highvale coal) is burned to supply the additional electricity requirement. The membrane based H<sub>2</sub> plant requires higher additional electricity requirement for most of the operating conditions tested. However, it requires comparable energy penalty than the H<sub>2</sub> plant with MEA-CO<sub>2</sub> capture process when operated at the lowest energy operating conditions at 80% CO<sub>2</sub> recovery. <br> <br>This thesis also investigates the sensitivity of the energy penalty as function of the percent CO<sub>2</sub> recovery. The break-even point is determined at a certain amount of CO<sub>2</sub> recovery where the amount of energy produced is equal to the amount of energy required. This point, where no additional energy is required, is approximately 73% CO<sub>2</sub> recovery for the MEA based capture plant and 57% CO<sub>2</sub> recovery for the membrane based capture plant. <br> <br>The amount of CO<sub>2</sub> emissions at various CO<sub>2</sub> recoveries using the best operating conditions is also presented. The results show that MEA plant has comparable CO<sub>2</sub> emissions to that of the membrane plant at 80% CO<sub>2</sub> recovery. MEA plant is more attractive than membrane plant at lower CO<sub>2</sub> recoveries.
47

Hydrogen production from anaerobic co-digestion of coffee mucilage and swine manure / Production d hydrogène par co-digestion anaérobie de mucilage du café et de lisier de porc

Hernandez Pardo, Mario Andres 22 November 2012 (has links)
Cette étude examine une approche alternative à l'utilisation de deux déchets provenant des activités agricoles et d'élevage développés en Colombie. Lisier de porc et de mucilage café ont été utilisés pour évaluer une co-digestion anaérobie processus axé sur la production d'hydrogène. En outre, les objectifs couvert une nouvelle étape dans le but de fermer le cycle des déchets fois. La thèse a été menéeen trois phases : 1. Evaluation de la productiond'hydrogène à partir de la co-digestion de mucilage café et du lisier de porc pendant la fermentation sombre ; 2. Évolution dans le temps de rétention par la surveillance des micro-organismes par qPCR et d'autres paramètres incluiding pH, le potentiel d'oxydo-réduction, et une pression partielle d'hydrogène ; 3. Traitement de l'effluent de processus de production d'hydrogène par digestion anaérobie avec production de méthane. Les résultats expérimentaux ont montré que les mélanges de deux déchets sont en mesure de produire de l'hydrogène. Un ratio substrat de 5:5, ce qui a été associé à un rapport C/N de 53, a été adapté pour la production d'hydrogène. En outre, la stabilité et l'optimisation du processus ont été évalués par l'augmentation du taux de charge organique influent. Ce fut la meilleure condition expérimentale en termes de taux moy en volume d'hydrogène cumulatif de production et de rendement qui étaient 2661 NmL, 760 NmL H2/Lwdet 43 NmL H2/gDCO, respectivement. Cette performance a été préservé au fil du temps, ce qui a été vérifié par la culture discontinue répétitive pendant 43 jours. Deux tendances ont été identifiées au cours du temps de rétention associée à l'hydrogène cumulatif similaire, mais avec des différences de phase de latence le temps et le taux de production d'hydrogène. T. thermosaccharolyticum était le genre dominant au cours de la tendance à court lié à la plus courte phase de latence de temps et plus le taux de production d'hydrogène. Les tendances de long ont été associées à une diminution de Bacillus sp. concentration au début des expériences, et avec le concours possible pour des substrats solubles entre T. thermosaccharolyticum et Clostridium sp. La troisième phase a montré que l'utilisation d'une deuxième phase pour produire du méthane était utile d'améliorer le traitement des déchets tant. Enfin, l'énergie totale produite à la fois pour les biocarburants ont montré des niveaux similaires avec d'autres processus. Cependant,l'hydrogène a été d'environ 10% de l'énergie totale produite dans le processus. En outre, les deux gaz peuvent être mélangés pour produire biohythane qui améliore les propriétés de biogaz. / This research investigates an alternative approach to the use of two wastes from agricultural and livestock activities developed in Colombia. Swinemanure and coffee mucilage were used to evaluatean anaerobic co-digestion process focused on hydrogen production. In addition, the aims covered a further stage in order to close the cycle of the both wastes. The thesis was conducted in three phases : 1. Evaluation of hydrogen production from the co-digestion of coffee mucilage and swine manure during dark fermentation ; 2. Trends over retention time through the monitoring of microorganisms by quantitative PCR and other parameters incluiding pH, oxidation reduction potential, and hydrogen partial pressure ; 3. Treatment of the effluent from hydrogen production process by anaerobic digestion with methane production. The experimental results showed that mixtures of both wastes are able to produce hydrogen. A substrate ratio of 5:5, which was associated with a C/N ratio of 53, was suitable for hydrogen production. Moreover, the stability and optimization of the process were evaluated by increasing the influent organic load rate. This wasthe best experimental condition in terms of average cumulative hydrogen volume, production rate and yield which were 2661 NmL, 760 NmLH2/Lwd and 43 NmL H2/gCOD, respectively. This performance was preserved over time, which was verified through the repetitive batch cultivation during 43 days. Two trends were identified over retention time associated with similar cumulative hydrogen, but with differences in lag-phase time and hydrogen production rate. T.thermosaccharolyticum was the dominating genus during the short trend related to the shortest lag phase time and highest hydrogen production rate. The long trends were associated with a decrease of Bacillus sp. concentration at the beginning of the experiments and with the possible competition for soluble substrates between T.thermosaccharolyticum and Clostridium sp. The third phase showed that the use of a second stage to produce methane was useful enhancing the treatment of both wastes. Finally, the overall energy produced for both biofuels (Hydrogen andmethane) showed similar levels with other process. However, hydrogen was around the 10% of the overall energy produced in the process. In addition, both gases could be mixed to produce biohythane which improves the properties of biogas.
48

Hydrogen production on bimetallic catalysts and local acidity investigation of aluminosilicates and mesoporous silica via single molecule spectroscopy

Xie, Jingyi January 1900 (has links)
Doctor of Philosophy / Department of Chemical Engineering / Keith L. Hohn / The autothermal reforming and partial oxidation of hexadecane via Pt/Ni bimetallic nanoparticles on various ceria-based supports were investigated. Nanoparticles with Pt/Ni molar ratios ranging from 0/100 to 10/90 were loaded on ceria-based supports including cerium oxide, gadolinium-doped cerium oxide and cerium-doped zirconium oxide. The effect of the Pt/Ni molar ratio and the promotional effect of the support were studied by comparing the hydrogen yield. TPR and XPS analysis showed that there was a strong interaction between Ni and the CeO₂-ZrO₂ support, which led to enhancement of catalyst performance when the Pt/Ni ratio was low. The strong interaction between Ni and CeO₂-ZrO₂ support was induced by the formation of a solid solution between NiO and ZrO₂. In the case of bimetallic catalysts loaded on Gd₂O₃-CeO₂, no significant improvement in the catalytic activity of autothermal reforming was achieved until the Pt/Ni ratio reached 10/90. With C-snarf-1 as a pH-sensitive fluorescent probe, the local acidity on the surface of gradient aluminosilicate thin films and in the pore structure of mesoporous silicate films was explored. The single molecule emission ratio (I₅₈₀/I₆₄₀) of C-snarf-1 on the gradient aluminosilicate films showed similar results as previously reported for aluminosilicate mesoporous films. As the Al/Si ratio increases, the emission ratio declines, indicative of increased material acidity. In the case the mesoporous silicate films, much broader distributions of emission ratios were observed and are suggestive of significant heterogeneity in the pore structure of these films. The average emission ratio increased with a rise in pH until pH 6 or 7. A further rise in pH leads to a decline in emission ratio. Molecules with high mobility showed a narrow distribution and slightly lower average emission ratio when compared to data from all detected molecules. This observation implies a reduced heterogeneity for mesopores in which the molecules rapidly diffuse. The narrow distribution and lower average value of emission ratio at low pH, combined with the decrease in emission ratio induced by an increase in ionic strength may further indicate that the interaction between dye molecules and the pore surface impacts the emission ratio of the dye molecules.
49

Développement par PECVD de membranes conductrices protoniques de type phosphonique pour la production d’hydrogène par (photo-)électrolyse de l’eau / Development by PECVD of phosphonic acid-type proton conductive membranes for hydrogen production by water (photo-)electrolysis

Kinfack leoga, Arnaud 09 October 2018 (has links)
Le but de ces travaux était de développer des membranes conductrices protoniques de type phosphonique par PECVD radio-fréquence en décharges continue et pulsée à partir du mono-précurseur diméthyl allylphosphonate. De telles membranes sont pressenties comme pouvant avantageusement remplacer la membrane Nafion® ou les membranes conventionnelles de type sulfonique ou phosphonique classiquement utilisées dans les dispositifs piles à combustible ou électrolyseur de type PEM. Ainsi, une étude paramétrique visant à établir des corrélations entre les propriétés des films et les paramètres de dépôt a été menée. Il ressort de cette étude paramétrique que l’utilisation d’une décharge pulsée est favorable à une vitesse de croissance plus élevée et une densité des films plus faible que le mode de décharge continue, favorisant ainsi la conduction protonique. Nous avons également démontré que les dépôts réalisés en mode de décharge pulsée présentent de meilleures capacités de sorption et de rétention d’eau, ce qui est bénéfique pour l’application visée qui est la (photo-)électrolyse de l’eau. Par ailleurs toutes les membranes phosphoniques plasma préparées sont stables d’un point de vue rétention d’eau et réseau covalent jusqu’à au moins 250 °C, ce qui garantit leur utilisation dans des systèmes pouvant fonctionner jusqu’à 120 °C. Par la suite les membranes phosphoniques plasma ont été intégrées en cellule d’électrolyse de l’eau, associées au Nafion® en tant qu’électrolyte. Les caractérisations électrochimiques en cellule ont montré que les membranes phosphoniques plasma sont suffisamment compétitives pour être envisagées dans le futur comme électrolytes solides à part entière dans des AME « tout solide ». / The purpose of this work was to develop phosphonic-type proton conductive membranes by radio-frequency PECVD in a continuous or pulsed discharge from the single precursor dimethyl allylphosphonate. Such membranes could advantageously replace the Nafion® membrane or conventional sulfonic-type or phosphonic acid-type membranes, more classically used in PEM fuel cells and electrolysis devices. A parametric study was carried out in order to establish correlations between the properties of the films and the deposition parameters. It appears that the use of a pulsed discharge promotes better films properties, namely higher growth rate and lower density, than the continuous discharge, thus promoting proton conduction. It was also noticed that the deposits prepared in a pulsed discharge have the highest sorption and water retention capacities, which is particularly beneficial for the intended application i.e. the (photo-) electrolysis of water. Furthermore, all the plasma phosphonic membranes prepared are stable in terms of water retention and covalent network up to at least 250 °C, which ensures their use in systems able to operate up to 120 °C. Subsequently the plasma phosphonic membranes, deposited on the Nafion® as mechanical support, were integrated as electrolyte membrane into a water electrolysis cell. It turns out that plasma phosphonic membranes are competitive enough to be envisaged in the future as integral solid electrolytes in solid membrane-electrodes assemblies.
50

Efeito da concentração de glicose e da alcalinidade na produção de hidrogênio em reator anaeróbio de leito fluidificado / Effect of glucose concentration and alkalinity in the hydrogen production in anaerobic fluidized bed

Amorim, Eduardo Lucena Cavalcante de 12 November 2009 (has links)
O objetivo deste estudo foi avaliar o efeito da adição de alcalinidade, da concentração da glicose e da taxa de carregamento orgânico na produção de hidrogênio e ácidos orgânicos em reator anaeróbio de leito fluidificado (RALF), contendo argila expandida (2,8 - 3,35 mm) como material suporte para adesão microbiana. Foram utilizados oito reatores idênticos, sendo quatro deles operados sem adição de alcalinidade, e com concentração de glicose de 2000, 4000, 10000 e 25000 mg/L, respectivamente. Outros quatro reatores operados com adição de alcalinidade, e com as mesmas concentrações de glicose cada um. Os reatores foram inoculados com lodo anaeróbio pré-tratado termicamente, operado com tempo de detenção hidráulica (TDH) decrescente de 8 h a 1 h à temperatura controlada de 30°C. Foi constatada produção volumétrica de hidrogênio máxima de 1,58 L/h.L, para o reator operado com 10000 mg/L de glicose com adição de alcalinidade (R10CA) e um rendimento máximo de 2,52 mol \'H IND.2\'/mol glicose, para o reator operado com 4000 mg/L de glicose com adição de alcalinidade (R4CA). O biogás produzido foi composto de \'H IND.2\' e \'CO IND.2\'. Em ambos os reatores, o conteúdo de hidrogênio aumentou com a redução do TDH de 8 h para 1 h, alcançando valor máximo de 77%, para o reator operado com 4000 mg/L sem adição de alcalinidade (R4SA). Os reatores operados com altas concentrações de glicose produção de hidrogênio, o qual predominou o ácido acético e butírico. Neste mesmo reator, o rendimento da produção de hidrogênio foi superior aos outros reatores. As análises de clonagem e sequenciamento do consórcio bacteriano revelaram semelhanças com Clostridium, Klebsiella, Enterobacter e bactérias não cultivadas. / This study evaluated the effect alkalinity addition, glucose concentration and organic loading rate in the hydrogen production and organic acids in an anaerobic fluidized bed reactor (AFBR), containing expanded clay (2.8 - 3,35 mm) as support material for microbial adhesion. We used eight identical reactors, four of them operated without the addition of alkalinity, and concentration of glucose in 2000, 4000, 10000 and 25000 mg/L, respectively. Another four reactors operated with the addition of alkalinity, and with the same concentrations of glucose each. The reactors were operated with hydraulic retention times (HRT) ranging from 8 h at 1 h, and temperature of 30°C. It has been found for hydrogen production rate maximum 1.58 L/h.L for the reactor operated with 10000 mg/L glucose with the addition of alkalinity (R10CA) and a maximum yield of 2.52 mol \'H IND.2\'/mol glucose to the reactor operated with 4000 mg/L glucose with the addition of alkalinity (R4CA). The biogas produced was composed of \'H IND.2\' and \'CO IND.2\'. In both reactors, the hydrogen content increased with the reduction of HRT of 8 h at 1 h, reaching a maximum of 77% for the reactor operated from 4000 mg/L without added alkalinity (R4SA). The reactors operated with high glucose concentrations (10000 mg/L and 25000 mg/L) had higher proportions of solvents such as soluble metabolites. There was a linear correlation between the hydrogen production rate and organic loading rate in all reactors. The yield, the hydrogen production rate and distribution of soluble metabolites in both reactors, were influenced by the glucose concentration. The reactor operated with 4000 mg/L and addition of alkalinity, presented the most favorable distribution of soluble metabolites to hydrogen production, which was predominant acetic and butyric acid. In the same reactor, the hydrogen yield was higher than other reactors. The cloning and sequencing analysis bacterial consortium revealed the presence of Clostridium, Klebsiella, Enterobacter and uncultivated bacteria.

Page generated in 0.0913 seconds