• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Synthetic [FeFe] Hydrogenase Active Site Model Complexes

Schwartz, Lennart January 2009 (has links)
[FeFe]-Hydrogenases (H2ases) are metalloenzymes that can catalyze the reversible reduction of protons to molecular hydrogen as part of the metabolism of certain cyanobacteria and green algae. Due to the low availability of the enzyme, synthetic complexes that mimic the natural active site in structure, function and activity are highly sought after. In this thesis, a number of [FeFe]-H2ases active site model complexes were synthesized to answer open questions of the active site and to develop unprecedented bio-inspired proton reduction catalysts. The first part describes the synthesis and the protonation properties of a [Fe2(μ-adt)(CO)4(PMe3)2] (adt = azadithiolate) complex which contains two basic sites that are similar to those found in the enzyme active site. Unusual kinetic factors give rise to four discrete protonation states. The twofold protonated state is the first model complex that simultaneously carries a proton at the azadithiolate nitrogen and a bridging hydride at the Fe-Fe bond. In the second part, a model complex with an unprecedented amine ligand was synthesized and studied. In analogy to the enzyme active site, the labile amine ligand is expelled after electrochemical reduction. The third part describes a series of model complexes with electronically different aromatic dithiolate ligands. It is demonstrated in one case that the tuning of the ligand by electron-withdrawing substituents results in proton reduction catalysis at an overpotential that is lower than that required by the non-substituted parent compound. The design and the synthetic work towards a new ruthenium-diiron dyad for light-driven hydrogen production are presented in the fourth part. In the final part, differently isotope-labelled mixed valent Fe(I)-Fe(II) model complexes were synthesized, in particular the unprecedented 15N labelled analogue, with the aim to provide EPR-spectroscopic references that will allow the elucidation of the nature of the central atom in the dithiolate bridge of the [FeFe] hydrogenase active site.
2

Molecular Approaches to Photochemical Solar Energy Conversion : Towards Synthetic Catalysts for Water Oxidation and Proton Reduction

Eilers, Gerriet January 2007 (has links)
<p>A molecular system capable of photoinduced water splitting is an attractive approach to solar energy conversion. This thesis deals with the functional characterization of molecular building blocks for the three principal functions of such a molecular system: Photoinduced accumulative charge separation, catalytic water oxidation, and catalytic proton reduction. </p><p>Systems combining a ruthenium-trisbipyridine photosensitizer with multi-electron donors in form of dinuclear ruthenium or manganese complexes were investigated in view of the rate constants of electron transfer and excited state quenching. The kinetics were studied in the different oxidation states of the donor unit by combination of electrochemistry and time resolved spectroscopy. The rapid excited state quenching by the multi-electron donors points to the importance of redox intermediates for efficient accumulative photooxidation of the terminal donor.</p><p>The redox behavior of manganese complexes as mimics of the water oxidizing catalyst in the natural photosynthetic reaction center was studied by electrochemical and spectroscopic methods. For a dinuclear manganese complex ligand exchange reactions were studied in view of their importance for the accumulative oxidation of the complex and its reactivity towards water. With the binding of substrate water, multiple oxidation in a narrow potential range and concomitant deprotonation of the bound water it was demonstrated that the manganese complex is capable of mimicking multiple aspects of photosynthetic water oxidation.</p><p>A dinuclear iron complex was investigated as biomimetic proton reduction catalyst. The complex structurally mimics the active site of the iron-only hydrogenase enzyme and was designed to hold a proton on the bridging ligand and a hydride on the iron centers. Thermodynamics and kinetics of the protonation reactions and the electrochemical behavior of the different protonation states were studied in view of their potential catalytic performance.</p>
3

Molecular Approaches to Photochemical Solar Energy Conversion : Towards Synthetic Catalysts for Water Oxidation and Proton Reduction

Eilers, Gerriet January 2007 (has links)
A molecular system capable of photoinduced water splitting is an attractive approach to solar energy conversion. This thesis deals with the functional characterization of molecular building blocks for the three principal functions of such a molecular system: Photoinduced accumulative charge separation, catalytic water oxidation, and catalytic proton reduction. Systems combining a ruthenium-trisbipyridine photosensitizer with multi-electron donors in form of dinuclear ruthenium or manganese complexes were investigated in view of the rate constants of electron transfer and excited state quenching. The kinetics were studied in the different oxidation states of the donor unit by combination of electrochemistry and time resolved spectroscopy. The rapid excited state quenching by the multi-electron donors points to the importance of redox intermediates for efficient accumulative photooxidation of the terminal donor. The redox behavior of manganese complexes as mimics of the water oxidizing catalyst in the natural photosynthetic reaction center was studied by electrochemical and spectroscopic methods. For a dinuclear manganese complex ligand exchange reactions were studied in view of their importance for the accumulative oxidation of the complex and its reactivity towards water. With the binding of substrate water, multiple oxidation in a narrow potential range and concomitant deprotonation of the bound water it was demonstrated that the manganese complex is capable of mimicking multiple aspects of photosynthetic water oxidation. A dinuclear iron complex was investigated as biomimetic proton reduction catalyst. The complex structurally mimics the active site of the iron-only hydrogenase enzyme and was designed to hold a proton on the bridging ligand and a hydride on the iron centers. Thermodynamics and kinetics of the protonation reactions and the electrochemical behavior of the different protonation states were studied in view of their potential catalytic performance.

Page generated in 0.052 seconds