1 |
BENCH-SCALE CONVERSION OF CARBON DIOXIDE TO A HYDROCARBON FUELKennedy, Melissa L. 29 September 2009 (has links)
No description available.
|
2 |
Valorisation des biodéchets alimentaires commerciaux par des procédés anaérobies / Valorization of commercial food waste via anaerobic processesCapson Tojo, Gabriel 12 December 2017 (has links)
La production croissante de déchets alimentaires dans le monde et des nouvelles réglementations internationales exigent le développement de nouveaux procédés pour le traitement de ce type de déchets. Parmi toutes les possibilités existantes, les procédés anaérobies représentent une approche durable qui permet le traitement et la valorisation de ces déchets. Ce doctorat vise à comprendre les processus biochimiques régissant la digestion anaérobie des déchets alimentaires, en fournissant des éléments pour le développement de procédés applicables à l'échelle industrielle.Dans un premier temps, un screening a été effectué pour élucider les paramètres principaux affectant la digestion anaérobie des déchets alimentaires, en évaluant différentes charges de substrat, teneurs en matière sèche, proportions de co-digestion et des inocula microbiens de différentes origines. Après avoir conclu l'importance cruciale de l'inoculum utilisé et de la charge du substrat, différentes stratégies de stabilisation des procédés de méthanisation ont été testées à l'aide de réacteurs discontinus consécutifs. Ce travail a permis de confirmer l'effet positif de la supplémentation des oligoéléments et à identifier le principal verrou: l'accumulation d'acide propionique. Dans le but de trouver une solution, deux expériences ont été axées sur l'évaluation de la capacité des matériaux conducteurs à base de carbone à résoudre ce problème. Le dosage de ces matériaux favorisait la cinétique de la digestion, améliorant significativement les productions volumétriques du méthane.Cette thèse fournit des connaissances nouvelles, à la fois sur les principaux mécanismes régissant la digestion anaérobie des déchets alimentaires et sur les implications qu'elles présentent pour la valorisation de ces déchets. En outre, des solutions possibles pour lever les verrous opérationnels ont été développés, permettant de fournir des recommandations pour l’implantation d’un procédé de digestion à l’échelle industrielle. / The increasing production of food waste worldwide and new international regulations call for the development of novel processes for the treatment of this waste. Among all the existing possibilities, anaerobic processes represent a sustainable-modern approach that allows waste treatment and valorization. This PhD thesis aims at understanding the biochemical processes governing anaerobic digestion of food waste, eventually providing a stable process applicable at industrial scale.As a first step, a screening was performed to elucidate the main parameter affecting anaerobic digestion of food waste, evaluating different substrate loads, solid contents, co-digestion proportions and microbial inocula from different origins. After concluding the critical importance of the inoculum used and the substrate load, different strategies for process stabilization for methane production were tested using consecutive batch reactors. This served for confirming the positive effect of supplementation of trace elements and to identify the main issue that was found: accumulation of propionic acid. Aiming at finding a solution, the final experiments were focused on assessing the capability of carbon-based conductive materials to solve this problem. The dosing of these materials favored the digestion kinetics, improving greatly the methane volumetric productivities.This thesis provides novel insights, both on the main mechanisms governing food waste anaerobic digestion and on the implications that they present for the valorization of this waste. In addition, potential solutions for the complications found are given, aiding to the development of a feasible industrial digestion process.
|
3 |
Investigating effects of electron donor availability on cathodic microbial community structure and functional dynamics in electromethanogenesisRagab, Alaa I. 10 1900 (has links)
Microbial electrochemical technologies (MET) exploit the bioelectrocatalytic activity of
microorganisms, with a main focus on waste-to-resource recovery.
Electromethanogenesis, a type of MET, describes the process of CO2 reduction
specifically to methane, catalyzed by methanogens that utilize the cathode directly as
an electron donor or through H2 evolving from the cathode surface. Applications are
mainly in the direction of bioelectrochemical power-to-gas, as well as biogas upgrading
and carbon capture and utilization. As the cathode and its associated microbial
consortia are key to the process, larger scale applications require improvements
especially in terms of optimal operational parameters, cathode materials and the
dynamics of the effect of electron transfer within the cathodic biofilm. The focus of this
dissertation is to improve the understanding of the dynamics and function of methaneproducing
biofilms grown on cathodes in electromethanogenic reactors in the presence
of two different electron donors: the cathode and the H2 evolving from the cathode
surface. The spatial homogeneity of the microbial communities across the area of the
cathode was demonstrated, which is relevant for large scale applications where
reproducibility is required for predictable engineered systems. Metagenomic and
metatranscriptomic methods were applied to elucidate the short-term changes in the
actively transcribed methanogenesis and central carbon assimilation pathways in
response to varying the availability of electrons by changing the set cathode potential in
a novel Methanobacterium species enriched from electromethanogenic
biocathodes. Although changes in functional performance were evident with varying
potential, no significant differential expression was observed and genes from the
methanogenesis and carbon assimilation pathways were highly expressed throughout.
Indium tin oxide (ITO) as a potentially hydrogen evolution reaction (HER) – inert
cathode material was evaluated using the mixotrophic Methanosarcina barkeri in an
attempt to develop a simplified material-science driven approach to future electron
transfer studies. It was found to be electrochemically unstable under the tested
conditions, losing its conductivity over time. Overall, the findings from these studies
provide new knowledge on the effects of electron donor availability on the functional
performance and the biocathode community dynamics. The understandings derived
from the study are relevant to methanogenic processes and should aid in system scaleup
design.
|
4 |
Le rôle des bactéries hydrogénotrophes et ferri-réductrices sur le processus de corrosion en contexte de stockage géologique / The role of hydrogenotrophic iron-reducing bacteria on the corrosion process in the context of geological disposalKerber Schütz, Marta 13 December 2013 (has links)
L’objectif principal de cette étude est d’évaluer le rôle de l’activité de bactéries hydrogénotrophes et ferri-réductrices sur le processus de corrosion anoxique en utilisant des indicateurs géochimiques. Il est considéré que le couple redox H2/Fe(III) est un moteur important pour les activités bactériennes qui peuvent ainsi affecter les vitesses de corrosion par la déstabilisation des couches de passivation (i.e. magnétite, Fe3O4). Les résultats indiquent que la magnétite de synthèse est déstabilisée en présence de bactéries hydrogénotrophes et ferri-réductrices due à la réduction du Fe(III) structural couplée à l’oxydation de l’H2. La quantité de Fe(III) bioréduit est augmentée en présence de concentrations croissantes en H2 dans le système: 4% H2 < 10% H2 < 60% H2. De plus, les résultats indiquent que la réaction de corrosion est différente selon la composition de la solution et la surface de contact de l’échantillon métallique (poudre de fer ou coupon en acier au carbone). Les produits de corrosion solides sont différents pour chaque échantillon étudié: vivianite, sidérite et chukanovite sont les principales phases minérales identifiées dans les expériences avec de la poudre de fer, tandis que vivianite et magnétite sont identifiées en présence de coupons en acier au carbone. Les résultats montrent que la vitesse de corrosion est quasiment deux fois plus importante en présence de bactéries après 5 mois de réaction. Cette étude apporte une nouvelle approche sur la compréhension des phénomènes de biocorrosion, l’identification des mécanismes physico-chimiques et la détermination des paramètres contrôlant la vitesse de corrosion. / The main objective of this study is to evaluate the role of hydrogenotrophic and IRB activities on anoxic corrosion process by using geochemical indicators. It is assumed that the redox couple H2/Fe(III) is an important driver for bacterial activities potentially affecting the corrosion rate by destabilization of passive layers (i.e. magnetite, Fe3O4). Our results indicate that synthetized Fe3O4 is destabilized in the presence of hydrogenotrophic IRB due to structural Fe(III) reduction coupled to H2 oxidation. The extent of Fe(III) bioreduction is notably enhanced with the increase in the H2 concentration in the system: 4% H2 < 10% H2 < 60% H2. Moreover, the results indicate that corrosion extent changes according to the solution composition and the surface of metallic sample (iron powder and carbon steel coupon). The solid corrosion products are different for each sample: vivianite, siderite and chukanovite are the main mineral phases identified in the experiments with iron powder, while vivianite and magnetite are identified with carbon steel coupons. Our results demonstrate that corrosion rate is increased almost two-fold in the presence of bacteria after 5 months of reaction. This study gives new insights regarding the understanding of biocorrosion phenomena, identification of physicochemical mechanisms, and determination of key parameters controlling the corrosion rate.
|
5 |
Mikrobielle Diversität in BiogasreaktorenSouidi, Khadidja 20 May 2008 (has links)
Die Effizienz von Biogasreaktoren hängt im wesentlichen Maße von der Substratverwertung durch die beteiligte Mikroflora ab. Die genaue Zusammensetzung der mikrobiellen Gemeinschaft ist jedoch bislang nur oberflächlich charakterisiert. In dieser Studie wird daher eine Übersicht über die mikrobielle Diversität in verschiedenen Biogasreaktorentypen (Rührkesselreaktor, Leach-bed-Reaktor, Festbett-Anaerobfilter) während der Fermentation verschiedener pflanzlicher Substrate (Mais-, Rüben-, Triticum-Ganzpflanzensilage, teilweise in Kofermentation mit Rindergülle) gegeben. Die Charakterisierung der Mikrobiologie erfolgte mittels der Entwicklung und nachfolgenden bioinformatischen Analyse von 16S rDNA Bibliotheken. Es wurden insgesamt sechs 16S rDNA Bibliotheken konstruiert. Insgesamt umfassten diese sechs 16S rDNA Bibliotheken 627 Klone. Mittels der zugehörigen fingerprint-Muster (amplified rDNA restriction analysis, ARDRA) wurden innerhalb der sechs 16S rDNA Bibliotheken 223 taxonomische Gruppen (operational taxonomic units, OTU) detektiert. Zur Erfassung der Archaea wurden 402 Klone analysiert. Für die Erfassung der Bacteria wurden 283 Klone untersucht. Damit wurden 114 Archaea OTU sowie 109 Bacteria OTU detektiert. Die Dominanz von hydrogenotrophen Methanbildnern in den Archaeaspezifischen 16S rDNA Bibliotheken sowie deren große Diversität sind Indizien für eine verstärkte Bildung von Methan durch Oxidation von CO2. In diesem Falle würde die Verwertung des Acetats überwiegend durch syntrophe Bacteria erfolgen. Die Analyse der Diversität innerhalb der Domäne Bacteria ergab für den Rührkesselreaktor bei der Kofermentation von Maissilage und Gülle im Normalzustand eine hohe Diversität unter den Vertretern der Phyla Firmicutes mit dem Genus Clostridium. / The efficiency of biogas reactors depends on the substrate utilisation by the involved microbial community. However, the exact composition of the microbial biocoenosis was rudimental characterized. In this study an overview of the microbial diversity in different anaerobic biogas reactor types (completly stirred tank reactor, leach bed reactor, fixed bed anaerobic filter) is given for the fermentation of different substrates (corn-, carrots-, triticale whole crop silage as renewable raw materials, partly in co-fermentation with cattle liquid manure). The characterisation of the microbial community was conducted via the construction of 16S rDNA libraries for both, methanogenic Archaea and fermentative Bacteria. Individual taxonomic groups within the 16S rDNA libraries were determined by means of amplified rDNA restriction analysis (ARDRA). The taxonomic classification of these groups was performed via a phylogenetic analysis of representative 16S rDNA sequences. In total six 16S rDNA libraries with 627 clones were developed. Together 223 taxonomic groups were detected; from these 114 was assigned to the domain Archaea and further 109 was assigned to the domain Bacteria. Within the examined biogas reactors a high diversity was found within the hydrogenotrophic methane producing Archaea, acetotrophic methane producing Archaea appears only with a comparatively small diversity. From the domain Bacteria fermentative species of phylum Firmicutes especially of the genus Clostridium were found to be dominant in the microbial community.
|
Page generated in 0.0525 seconds