Spelling suggestions: "subject:"electrothermal simulation""
1 |
EVALUATION OF THE MOISTURE APPEARENCE IN THE ICE RINK FACILITIES BASED ON OBSERVATION STUDIES AND PERFORMED SIMULATIONS IN HYGROTHERMAL SOFTWAREKucharczyk, Lukasz January 2017 (has links)
In the paper, there are presented issues related to the ice rink venues. These widely known objects,all around the world,are one of the most complex types of the public buildings. It is caused mainly by the thermal conditions, which prevails in such objects but also energy demand needed for operational processes. Range of indoor temperatures may vary from -5oC in place of ice pad and close to it, up to +20oC in dressing rooms, offices or tribunes for the spectators. Like any other buildings, the same ice rink venues should meet the conditions and provide proper indoor environmental quality (IEQ) for every user of the object. It is mainly performed by the appliance of the newest technology, which is taking care and control aspects like: temperature, relative humidity, energy usage, lighting etc. In this document, there are presented 5 ice rink facilities,which were taken into account, in order to check if there are providing comfortable and proper conditions indoors. All the investigated halls were in the City of Stockholm. In order to obtain require data, some professional tools were used including infrared camera and moisture meter. The registered data was including the average temperature of the indoor air and level of relative humidity. Based on this data, the dew point temperature has been calculated. Another aspect of the work was carrying out simulations of the typical ice rink wall construction and finding the best possible placement for the vapour barrier. In these case, the simulation had been performed in the different cities located in Sweden. Function of this layer is mainly to inhibit the migration of the water vapor and to protect the thermal insulation layer from dampness. However, installed in wrong place in the wall composition may give rise to serious problems related to moisture and humidity. By using WUFI software, it was possible to present hygrothermal conditions like: relative humidity, dew point temperature and water content of the individual component of designed wallin relation to different placement of damp proofing material.
|
2 |
OEKO-ID - Innendämmungen zur thermischen GebäudeertüchtigungRuisinger, Ulrich, Ettenauer, Jörg, Plagge, Rudolf, Hengsberger, Herwig, Kautsch, Peter 26 November 2014 (has links) (PDF)
Das Projekt OEKO-ID hat zum Ziel. problematische Bauteilanschlüsse, insbesondere Balkenköpfe von Holzdecken, im Zusammenhang mit "ökologischen" Innendämmsystemen messtechnisch zu untersuchen. Des Weiteren sollen Möglichkeiten und Grenzen der hygrothermischen Simulation aufgezeigt werden. Ferner wurde eine neue Methode molekularbiologischer und baubiologischer Untersuchungen, hier zur Detektierung von Schimmelpilzen, entwickelt und optimiert.
|
3 |
OEKO-ID - Innendämmungen zur thermischen Gebäudeertüchtigung: Untersuchung der Möglichkeiten und Grenzen ökologischer, diffusionsoffener Dämmsysteme: Endbericht Oktober 2013Ruisinger, Ulrich, Ettenauer, Jörg, Plagge, Rudolf, Hengsberger, Herwig January 2013 (has links)
Das Projekt OEKO-ID hat zum Ziel. problematische Bauteilanschlüsse, insbesondere Balkenköpfe von Holzdecken, im Zusammenhang mit "ökologischen" Innendämmsystemen messtechnisch zu untersuchen. Des Weiteren sollen Möglichkeiten und Grenzen der hygrothermischen Simulation aufgezeigt werden. Ferner wurde eine neue Methode molekularbiologischer und baubiologischer Untersuchungen, hier zur Detektierung von Schimmelpilzen, entwickelt und optimiert.:Inhaltsverzeichnis
1 Technisch-wissenschaftliche Beschreibung der Arbeit 4
1.1 Projektabriss 4
2 Testhaus und energetische Sanierung 6
2.1 Literaturrecherche 6
2.2 Auswahl der Dämmsysteme 7
2.3 Planung Versuchsgebäude 8
2.4 Adaptierung Versuchsgebäude 8
2.5 Vorbereitende Arbeiten
2.7 Montage der Dämmsysteme 14
2.8 Baupraktische Erfahrungen im Spiegel des WTA-Merkblatts E-8-14 18
2.9 Beschreibung der verwendeten Dämmsysteme 20
2.10 Bewertung der verwendeten Dämmstoffe bezüglich der Verarbeitung 26
2.11 Vergleich der Dämmsysteme bezüglich OI3- Index 29
2.12 Erfahrungen beim Rückbau und der Entsorgung 31
2.13 Zusammenfassung der Eigenschaften der Dämmsysteme 39
2.14 Reduzierung der Transmissionswärmeverluste durch Innendämmmaßnahmen 41
3 Hygrothermische Materialkennwerte und -funktionen 43
3.1 Materialuntersuchungen 43
3.2 Beprobung . 44
3.3 Messverfahren 45
3.4 Verifizierungsexperimente: kontinuierliche Wasseraufnahme und Abtrocknung 52
3.5 Erstellung von Materialfunktionen 53
3.6 Zusammenfassung der Eigenschaften der Materialien und Innendämmsysteme 62
4 Mikrobiologische Untersuchungen und Methodenentwicklung 67
4.1 Vorgehen 67
4.2 Ergebnisse 75
5 Hygrothermische Vor-Ort-Messungen 81
5.1 Auswertung der Messdaten 81
5.2 Außen- und Raumklima 82
5.3 Temperatur und Luftfeuchte auf der Bestandsoberfläche 94
5.4 Temperatur und Luftfeuchte in der Mitte der Balkentasche 105
5.5 Temperatur und Luftfeuchte vor dem Stirnholz 109
5.6 Holzfeuchtemessungen 115
5.7 Oberflächentemperaturen 121
5.8 Temperatur- und Feuchteprofile an den Balken 125
5.9 Abdichtung der Balkenauflagertaschen 140
5.10 Mögliches Schimmelpilzwachstum in den Balkenauflagern 147
5.11 Konvertieren und Auswerten der Messungen 149
5.12 Resümee der hygrothermischen Messungen 149
6 Hygrothermische Simulationen 152
6 Hygrothermische Simulationen 152
6.1 Verwendete Simulationsprogramme 152
6.2 Temperatur-Korrektur der Holzfeuchtesensoren 154
6.3 Einfluss von Schlagregen 158
6.4 Berücksichtigung der Permeabilität der Baumaterialien 162
6.5 Simulation der Messergebnisse 166
6.6 Simulation der Grenzschicht Dämmsystem/ Bestandskonstruktion 168
6.7 Simulation eines Balkenkopfs 170
7 Dissemination - Darstellung der Verbreitungs- und Verwertungsmaßnahmen 174
7.1 Workshops 174
7.2 Zusammenarbeit mit anderen Projekten 175
7.3 Vorträge auf (Fach-)Tagungen und Konferenzen 175
7.4 Publikationen 178
8 Zusammenfassung 180
8.1 Technologische und ökologische Bewertung der Dämmsysteme 180
8.2 Bestimmung der Materialeigenschaften 181
8.3 Mikrobiologische Untersuchungen und Methodenentwicklung 181
8.4 Hygrothermische Vorortmessungen182
8.5 Hygrothermische Simulationen 183
8.6 Dissemination 184
9 Literaturverzeichnis 185
10 Unterschrift 192
A1 Anhang zum Abschnitt 2 Versuchsaufbau 193
A2 Anhang zum Abschnitt 4 - Mikrobiologische Untersuchungen 194
A3 Abdruck der Publikationen in internationalen wissenschaftlichen Zeitschriften 208
A4 Bauteilkatalog 230
A5 Monatliche Klima-Durchschnittswerte 247
|
4 |
Assessing Moisture Resilience of Wall Assemblies to Wind-Driven Rain Loads Arising from Climate ChangeXiao, Zhe 18 February 2022 (has links)
Moisture loads arising from the deposition of wind-driven rain (WDR) on building façades can induce detrimental effects to wall assembly components and can adversely influence their long-term performance. Wind-driven rain as a climatic phenomenon will inevitably be affected by the evident changing climate in the near future. Wall assemblies subjected to wind-driven rain loads will also perform differently due to a varying moisture environment over the course of time. The performance of the building envelope, including the wall assembly, largely determines the serviceability of a building over its life cycle. Thus, it is essential for practitioners to understand and to be able to assess such performance. In this study, a complete procedure has been developed to permit assessing the moisture resilience of wall assemblies to wind-driven rain loads arising from climate change. The development of this procedure included four phases. In the first phase the historical and projected climate data was analysed to identify the possible wind-driven rain conditions to which a wall assembly may be exposed. The magnitudes of wind-driven rain and driving-rain-wind-pressure for different return periods were also investigated. Based on the results from phase one, a watertightness test protocol was established taking into consideration the possible ranges of wind-driven rain and driving-rain-wind-pressure as they may occur spatially, as well as temporally, across Canada. The range of watertightness test parameters was accommodated in the newly built Dynamic Wind and Wall Testing Facility (DWTF) at the National Research Council Canada. Thereafter in phase two of the research, wall assemblies having different configurations were tested in the DWTF following the test protocol to obtain the moisture load for wall assemblies under different wind-driven rain conditions. Such moisture loads were formulized and used in the third phase, where hygrothermal simulations were conducted to derive the hygrothermal parameters of the wall assemblies subjected to historical and projected climate data. In the final research development phase, different criteria and methods were explored to describe the performance of wall assemblies based on the hygrothermal parameters. During the development of the moisture resilience assessment procedure, a novel wind-driven-rain-pressure-index was devised to describe the extent of the effects arising from the concurrent action of wind-driven rain and driving-rain-wind-pressure loads on a vertical wall assembly; a new two-step approach was established to formulize the watertightness test results and thereby permit calculating the moisture load using values of hourly wind-driven-rain and hourly driving-rain-wind-pressure of a given location; a novel severity index was proposed to quantitatively describe the damage events arising from such moisture load on the wall assemblies. The moisture performance of tested wall assemblies subjected to historical and projected future climate were compared and discussed. The risks of occurrence of damage events in wall assemblies during different time periods were also demonstrated.
|
Page generated in 0.1242 seconds