• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 1
  • 1
  • Tagged with
  • 6
  • 6
  • 4
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Fuktutredning av massivträkonstruktion : Analys av vägg utan ångspärr / Moisture analysis of solid wood construction : Analysis of a wall without vapour barrier

Olsson Thor, Johan, Eriksson, Robert January 2014 (has links)
Rapporten ingår i ett FoU- projekt för Högskolan Dalarna, där målet är att ta fram en konstruktion utan ångspärr som ska klara dagens mått på lufttäthet och fuktkrav. Syftet med denna rapport är att utreda hur fukt påverkar en byggnad medmassivträstomme och olika isoleringsmaterial utan ångspärr. Mineralull och träfiberisolering jämförs mot varandra för att se hur dessa påverkarfuktbelastningen i en väggkonstruktion. Testobjektet är lokaliserat i Dalarna, inget fukttillskott har funnits inomhus i byggnaden. För att genomföra detta arbete har tre stycken olika metoder används. Ensimulering, verkliga uppmätta värden och en provtagning. Fuktsimuleringen genomfördes med hjälp av programmet WUFI, uppmätta värden i form av relativ fuktighet och temperatur har samlats in kontinuerligt under två års tid från väggkonstruktionen via mätsensorer. Provtagningen utfördes med ett fysiskt ingrepp på samma nivå i konstruktionen som mätsensorer var placerade. Resultat presenteras i form av diagram och tabeller där det går att avläsa konstruktionens nulägesstatus i form av relativ fuktighet, temperatur, fuktkvot och mikrobiologisk påväxt. Isoleringsmaterialen påvisar en hög relativ fuktighet under vinterhalvåret längst ut i konstruktionen mot utomhusklimatet. Utomhusklimatet har visats spela stor roll i detta. Ingen direkt mikrobiologisk påväxt har påträffats trots en hög halt av fukt. Resultaten visar att träfiberisoleringen har bättre förmåga att hantera fukt i jämförelse med mineralullen. En vidarestudie med fuktbelastning och 21 °C inomhus bör utföras. Men för att denna studie ska fungera rekommenderas en tvåstegstätad fasadlösning för att klara fuktbelastningen i väggkonstruktionen. / The report is part of a research and development project for Dalarna University,where the goal is to produce a design without a vapour barrier that will meettoday's measure of airtightness and moisture requirements. The purpose of this report is to investigate how moisture affects a building withsolid wood and various insulation materials without vapour barrier. Mineral woolinsulation and wood fiber insulation will be compared against each other to seehow they affect the moisture load in a wall. The test object is located in Dalarna,no additional moisture load affect the indoor environment. To carry out this work, three different methods are used. A moisture simulationwas performed using the program WUFI, measured values in terms of relativehumidity and temperature were collected over two years from the wall of thebuilding. A sampling was performed with a physical operation on the same levelin the wall where measurement sensors were placed. Results are presented in form of graphs and tables where you can read thecurrent state of the construction in terms of relative humidity, temperature,moisture content and microbiological fouling. Insulation materials demonstrate ahigh relative humidity at outer layers of the construction during the wintermonths. The external environment has been shown to play a major part for theresults. No direct microbiological fouling has been detected despite a highcontent of moisture. The result of wood fiber insulation demonstrates a better ability to handlemoisture. A further study with a moisture load and 21 degrees indoors should beperformed. But for this study to work it’s recommended to change the currentfacade solution to a two- step sealed facade solution to manage the moistureload in the wall.
2

EVALUATION OF THE MOISTURE APPEARENCE IN THE ICE RINK FACILITIES BASED ON OBSERVATION STUDIES AND PERFORMED SIMULATIONS IN HYGROTHERMAL SOFTWARE

Kucharczyk, Lukasz January 2017 (has links)
In the paper, there are presented issues related to the ice rink venues. These widely known objects,all around the world,are one of the most complex types of the public buildings. It is caused mainly by the thermal conditions, which prevails in such objects but also energy demand needed for operational processes. Range of indoor temperatures may vary from -5oC in place of ice pad and close to it, up to +20oC in dressing rooms, offices or tribunes for the spectators. Like any other buildings, the same ice rink venues should meet the conditions and provide proper indoor environmental quality (IEQ) for every user of the object. It is mainly performed by the appliance of the newest technology, which is taking care and control aspects like: temperature, relative humidity, energy usage, lighting etc. In this document, there are presented 5 ice rink facilities,which were taken into account, in order to check if there are providing comfortable and proper conditions indoors. All the investigated halls were in the City of Stockholm. In order to obtain require data, some professional tools were used including infrared camera and moisture meter. The registered data was including the average temperature of the indoor air and level of relative humidity. Based on this data, the dew point temperature has been calculated. Another aspect of the work was carrying out simulations of the typical ice rink wall construction and finding the best possible placement for the vapour barrier. In these case, the simulation had been performed in the different cities located in Sweden. Function of this layer is mainly to inhibit the migration of the water vapor and to protect the thermal insulation layer from dampness. However, installed in wrong place in the wall composition may give rise to serious problems related to moisture and humidity. By using WUFI software, it was possible to present hygrothermal conditions like: relative humidity, dew point temperature and water content of the individual component of designed wallin relation to different placement of damp proofing material.
3

Vapour Diffusion Control in Framed Wall Systems Insulated with Spray Polyurethane Foam

Smith, Rachel Cecilia January 2009 (has links)
The Intergovernmental Panel on Climate Change (IPCC) estimates that buildings account for 40% of the global energy use. The IPCC believes substantial improvements to building efficiency can be implemented easily by improving building enclosures through increased levels of insulation, optimizing glazing areas and minimizing infiltration of outside air.<br><br> Building enclosure design encompasses a wide range of parameters but the transport of heat, air and moisture through the enclosure is of primary importance. In predominantly cold Canadian climates, adequate thermal insulation, effective air barriers, and proper moisture control are crucial for energy savings and durability of the structure.<br><br> For decades, standard construction practice in Canada dictated a polyethylene sheet behind the interior drywall layer to serve as a vapour barrier for assemblies with traditional fibre-based cavity insulation. If the polyethylene sheet was sealed carefully enough it had the added benefit of reducing air leakage. Unfortunately, vapour barriers place the emphasis on the wrong moisture transport mechanism; air leakage can have 10 times or greater the wetting potential than vapour diffusion. Regardless, code enforcement personnel continued (and continue in some areas) to require vapour barriers in all climates, all assemblies, and all occupancies. To do so, they overrule the provision in Part 5 of The National Building Code of Canada that states vapour barriers are not required if it can be shown that the uncontrolled vapour diffusion will not affect the operation of the building and systems, or the health and safety of the occupants.<br><br> Foam plastic insulations perform better than fibre-based insulation in terms of the combined resistance to transmission of heat, air and vapour. This research investigated several types of open cell and closed cell spray polyurethane foam insulation in a variety of assembly configurations both in lab tests and hygrothermal simulations. The simulations were extrapolated to seven Canadian climate categories and three levels of interior relative humidity. The goal was to determine which spray polyurethane foam applications required the addition of a dedicated vapour barrier layer beyond what the foam itself could provide.<br><br> The moisture content of the oriented strand board sheathing layer (OSB) in the tested and modelled assemblies was used as the performance evaluation point because during wintertime vapour drives, the wood sheathing is the most likely condensing surface. Prolonged high moisture content (greater than 20%) in wood and wood products in wall assemblies leads to mould growth and decay. By this measure, if the wood sheathing moisture contents stay within the safe range (less than 19%) a vapour barrier is not necessary. The results are presented in Table 7-4.<br><br> The performance of assemblies containing closed cell spray foam was excellent for all climates and humidity levels. Their performance was equivalent to traditional wall assemblies incorporating a polyethylene sheet vapour barrier. The performance of assemblies with open cell spray foam was equivalent to traditional wall assemblies containing no vapour barrier. Open cell spray foam and fibreglass batt both require additional vapour control layers with all but the mildest Canadian climates with the lowest interior humidities. However, in those mild climates with low interior humidities, the only vapour control layer required was a medium permeance latex paint with primer.<br><br>
4

Vapour Diffusion Control in Framed Wall Systems Insulated with Spray Polyurethane Foam

Smith, Rachel Cecilia January 2009 (has links)
The Intergovernmental Panel on Climate Change (IPCC) estimates that buildings account for 40% of the global energy use. The IPCC believes substantial improvements to building efficiency can be implemented easily by improving building enclosures through increased levels of insulation, optimizing glazing areas and minimizing infiltration of outside air.<br><br> Building enclosure design encompasses a wide range of parameters but the transport of heat, air and moisture through the enclosure is of primary importance. In predominantly cold Canadian climates, adequate thermal insulation, effective air barriers, and proper moisture control are crucial for energy savings and durability of the structure.<br><br> For decades, standard construction practice in Canada dictated a polyethylene sheet behind the interior drywall layer to serve as a vapour barrier for assemblies with traditional fibre-based cavity insulation. If the polyethylene sheet was sealed carefully enough it had the added benefit of reducing air leakage. Unfortunately, vapour barriers place the emphasis on the wrong moisture transport mechanism; air leakage can have 10 times or greater the wetting potential than vapour diffusion. Regardless, code enforcement personnel continued (and continue in some areas) to require vapour barriers in all climates, all assemblies, and all occupancies. To do so, they overrule the provision in Part 5 of The National Building Code of Canada that states vapour barriers are not required if it can be shown that the uncontrolled vapour diffusion will not affect the operation of the building and systems, or the health and safety of the occupants.<br><br> Foam plastic insulations perform better than fibre-based insulation in terms of the combined resistance to transmission of heat, air and vapour. This research investigated several types of open cell and closed cell spray polyurethane foam insulation in a variety of assembly configurations both in lab tests and hygrothermal simulations. The simulations were extrapolated to seven Canadian climate categories and three levels of interior relative humidity. The goal was to determine which spray polyurethane foam applications required the addition of a dedicated vapour barrier layer beyond what the foam itself could provide.<br><br> The moisture content of the oriented strand board sheathing layer (OSB) in the tested and modelled assemblies was used as the performance evaluation point because during wintertime vapour drives, the wood sheathing is the most likely condensing surface. Prolonged high moisture content (greater than 20%) in wood and wood products in wall assemblies leads to mould growth and decay. By this measure, if the wood sheathing moisture contents stay within the safe range (less than 19%) a vapour barrier is not necessary. The results are presented in Table 7-4.<br><br> The performance of assemblies containing closed cell spray foam was excellent for all climates and humidity levels. Their performance was equivalent to traditional wall assemblies incorporating a polyethylene sheet vapour barrier. The performance of assemblies with open cell spray foam was equivalent to traditional wall assemblies containing no vapour barrier. Open cell spray foam and fibreglass batt both require additional vapour control layers with all but the mildest Canadian climates with the lowest interior humidities. However, in those mild climates with low interior humidities, the only vapour control layer required was a medium permeance latex paint with primer.<br><br>
5

Elaboration et caractérisation des biofilms à base d'amidon de manioc renforcés par des charges minérales bi et tri-dimensionnelles / Preparation and characterization of cassava starch based films reinforced by mineral fillers

Belibi, Pierre Celestin 13 January 2013 (has links)
Des films composites et nanocomposites ont été élaborés par la méthode du casting à partir d’amidon natif de manioc. Ils ont été plastifiés par le glycérol et renforcés par des chargesminérales synthétiques de zéolithe Beta et de beidellite sodique. L’influence du type de charge, de l’état de la charge (lyophilisé ou non-lyophilisé ou séchage à l’air) ainsi que du taux de charge sur les propriétés mécaniques et barrières à la vapeur d’eau des films correspondants a été étudiée. Les valeurs de la solubilité dans l’eau et de la perméabilité à la vapeur d’eau des échantillons renforcés par des nanocristaux de zéolithe Beta lyophilisés sont plus grandes que celles du film de contrôle. Une augmentation significative des propriétés mécaniques, en particulier le module d’Young de ces films a aussi été observée. Une amélioration de la perméabilité à la vapeur d’eau des films composites contenant des cristaux de beidellite sodique et des films nanocomposites contenant des nanocristaux de zéolithe Beta a été trouvée. Tous les films ont été caractérisés par diffraction de rayons X. / Composite and nanocomposite films were prepared by casting method, using native cassava starch. The films were plasticized with glycerol and reinforced with synthetic Beta zeolite nanocrystals and Na-beidellite crystals. We studied the effect of the filler contents and type on the mechanical and water barrier properties of the resulting films. We found that filmsreinforced with lyophilized Beta zeolite nanocrystals present both high water solubility (WS) and high water vapor permeability (WVP) values compared to those of the pristine film. A drastic increase of the mechanical properties, especially in the Young’s modulus, of these films was also observed. An improvement of the WVP was found for composites prepared from Na-beidellite crystals and for nanocomposites from non-lyophilized Beta zeolite nanocrystals. All the films were characterized by X-ray diffraction.
6

Alternative methods for analysing moisture transport in buildings : Utilisation of tracer gas and natural stable isotopes

Gudmundsson, Kjartan January 2003 (has links)
New methods, based on tracer gas measurements and isotopicanalysis can be used to evaluate the moisture properties ofbuilding materials and provide the means for forensic analysisof the origins and history of excessive water in buildings, theimmediate practical consequences of which will be the abilityto improve the moisture performance of constructions. It is shown, in theory and through measurements how thewater vapour permeability of porous building materials can witha good degree of accuracy be estimated with tracer gasmeasurements that provide an efficient alternative to the cupmethod. Complementary measurements may be carried out in orderto evaluate the contribution of surface diffusion and theeventual enhancing effects of moisture content on the diffusioncoefficient. The Random Hopping Model is used to illustrate howthe surface diffusion coefficient depends on the amountadsorbed and the activation energy of migration that can beevaluated from the sorption isotherms. It is explained how the abundance ratios of two of the mostordinary isotopes of hydrogen and oxygen in water can be usedto determine its history. These isotopes are stable and givethe water a distinct signature that can be used to reveal itssource as shown in a case study. In a contrary manner themeasured isotopic separation can be used to determine therelevance of different transport processes and reactions. It isof central importance that not only does the magnitude ofisotopic separation for the reactions vary for deuterium andoxygen-18 but even the ratio thereof. One of the challenges hasbeen to construct an experimental method for retrieving samplesof water for comparison. Furthermore this thesis includes an evaluation of a new typeof a light weight construction with loose-fill cellulose fibre,in which the conventional polyethylene vapour barrier has beenreplaced with polypropylene fabric. With a verified model ithas been investigated how the construction would perform fordifferent internal moisture loads and reference climate fromthe literature. The results suggest that this type ofconstruction is not to be recommended. KEYWORDS:tracer gas, water vapour permeability,diffusion, surface diffusion, isotopic analysis, deuterium,oxygen-18, fractionation, vapour barrier, transient numericalmodelling of diffusion. / QC 20100611

Page generated in 0.0582 seconds