• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Anatomia e ultraestrutura do processo de infecção de Xanthomonas causadoras de doenças em citros / Anatomy and ultrastructure of Xanthomonas infectious process causing diseases in citrus

Vieira, Flávia Campos Freitas [UNESP] 04 June 2018 (has links)
Submitted by FLÁVIA CAMPOS FREITAS VIEIRA (flavia.camposfv@yahoo.com.br) on 2018-06-28T14:09:18Z No. of bitstreams: 1 Tese_Flávia_Vieira_2018.pdf: 8871588 bytes, checksum: e1ee1b7f2e2e7170f04d44c1a1e76d6a (MD5) / Approved for entry into archive by Neli Silvia Pereira null (nelisps@fcav.unesp.br) on 2018-06-29T18:42:12Z (GMT) No. of bitstreams: 1 vieira_fcf_dr_jabo.pdf: 8871588 bytes, checksum: e1ee1b7f2e2e7170f04d44c1a1e76d6a (MD5) / Made available in DSpace on 2018-06-29T18:42:12Z (GMT). No. of bitstreams: 1 vieira_fcf_dr_jabo.pdf: 8871588 bytes, checksum: e1ee1b7f2e2e7170f04d44c1a1e76d6a (MD5) Previous issue date: 2018-06-04 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) / Os citros são um grupo de espécies vegetais, com alto potencial produtivo, porém, acometido por várias doenças. Do gênero de bactérias Xanthomonas, três espécies são patogênicas a citros: Xanthomonas citri subsp. citri, agente causal do cancro cítrico, uma das doenças de maior preocupação da citricultura; X. fuscans subsp. aurantifolii tipos B e C, que causam a cancrose; e X. alfalfae subsp. citrumelonis, responsável por causar a mancha bacteriana dos citros. Diante disso, o objetivo desse trabalho foi a análise e descrição, em nível anatômico e ultraestrutural, dos processos de infecção de bactérias do gênero Xanthomonas, causadoras de doenças em citros, a correlação do fenótipo da interação XfaC-citros com o transcriptoma e a análise dos fatores de virulência das estirpes estudadas. O processo de infecção das estirpes Xac306, Xac636, Xac828, Xacm1510, XfaC1632 e XfaC1630 em lima ácida ‘Galego’ e/ou laranja doce ‘Hamlin’, foi avaliado em diferentes períodos de infecção, pelas técnicas de microscopia de luz e eletrônicas de varredura e transmissão. As seguintes características relacionadas a virulência das estirpes foram avaliadas: formação in vitro de biofilme, produção de goma, motilidade “swimming” e auto agregação celular. Os resultados mostraram que Xac306 é a estirpe mais agressiva dentre as demais, visto pelos sintomas e pela intensidade das alterações anatômicas no tecido de ‘Hamlin’ e ‘Galego’. O processo de infecção em lima ácida ‘Galego’ foi semelhante em todas as estirpes de Xanthomonas estudadas, pois induziram hiperplasia e hipertrofia, porém, em diferentes intensidades, sendo que as alterações provocadas pelas estirpes Xac828 e Xacm1510 não resultaram no rompimento da epiderme; todas as estirpes produziram goma, envolvendo as bactérias e favorecendo a colonização no ambiente intercelular. A microscopia de luz permitiu identificar alterações na anatomia de lima ácida ‘Galego’ infectada e a diferença de susceptibilidade entre as variedades de citros inoculadas com Xac306 e estirpes de XfaC. As microscopias eletrônicas de varredura e transmissão permitiram a identificação de aspectos em comum às estirpes, independente da variedade cítrica. A HR induzida por estirpes de XfaC foi caracterizada pela microscopia eletrônica de transmissão. Com a análise de microscopia, não foi possível estabelecer uma relação direta entre os testes de formação in vitro de biofilme, produção de goma e motilidade “swimming” das estirpes. A análise dos dados de transcriptoma revelou que a resposta de defesa de laranja ‘Hamlin’ contra XfaC foi uma resposta rápida e eficiente que levou a indução de HR, que em última instância, conteve a infecção pela morte celular programada no local da infecção. Esse trabalho ampliou o conhecimento da área sobre o comportamento de diferentes estirpes de Xanthomonas causadoras de doenças em citros, fornecendo informações sobre sua interação com o hospedeiro suscetível e a resposta de defesa de XfaC em interação incompatível. / Citrus are a diverse group of plant species, with high yield potential, but affected by several diseases. The bacteria genus Xanthomonas has three species pathogenic to citrus: Xanthomonas citri subsp. citri, causal agent of citrus canker, one of the most important diseases of citrus crop; X. fuscans subsp. aurantifolii types B and C, causing citrus cancrosis; and X. alfalfae subsp. citrumelonis, which causes citrus bacterial spot. Therefore, the goal of this work was to analyze and describe, at the anatomical and ultrastructural level the infectious processes of Xanthomonas causing diseases in citrus, the correlation of the XfaC-citrus interaction phenotype with the transcriptome and the comparative analysis of virulence related factors, in order to elucidate morphophysiological traits of host-pathogen interaction. The infection process of Xac306, Xac636, Xac828, Xacm1510, XfaC1632 and XfaC1630 strains in 'Galego' Mexican lime and 'Hamlin' sweet orange were evaluated at different points of infection by light microscopy and scanning and transmission electron microscopy. The following virulence related characteristics of the strains were evaluated: in vitro biofilm formation, gum production, swimming motility and cellular auto aggregation. The results showed that Xac306 is the most aggressive strain among the others, due to the intensity of the symptoms and anatomical alterations in 'Hamlin' and 'Galego' tissue. The infection process in the susceptible host ('Galego' Mexican lime) was similar for all Xanthomonas strains studied, since they induced hyperplasia and hypertrophy, however in different intensities, and the alterations caused by Xac828 and Xacm1510 strains did not result in epidermis rupture; all strains produce gum, involving bacteria and assisting colonization in the intercellular environment. Light microscopy was able to identify anatomical alterations in 'Galego' Mexican lime infected tissue and the susceptibility differences between citrus varieties inoculated with Xac306 and XfaC strains. The scanning and transmission electron microscopies was able to identify common traits to the strains, regardless of the citrus variety. The HR induced by XfaC strains was characterized by transmission electron microscopy. We could not stablish a direct relation between the in vitro biofilm formation, gum production and "swimming" motility of the strains with the microscopy analysis. The transcriptome analysis revealed that 'Hamlin' defense response against XfaC is a quick and effective response that led to an HR induction, which ultimately contained the infection, by programmed cell death at the site of infection. This work expanded our knowledge about the behavior of different Xanthomonas strains causing citrus diseases, providing information on its interaction with the susceptible host and the defense response of XfaC in an incompatible interaction.
2

Efeito do extrato de Azadirachta indica (nim) sobre resposta de hipersensibilidade mediada por ácido salicílico em células de Rubus fruticosus / Effect of Azadirachta indica extract (neem) on hypersensitivity response mediated by salicylic acid in cells of Rubus fruticosus.

Paviani, Veronica 01 June 2010 (has links)
As plantas, assim como outros organismos, possuem a capacidade de se defenderem contra ataque de patógenos. Uma das respostas desencadeadas pelo reconhecimento do patógeno pelas células vegetais é a reação de hipersensibilidade (RH), que envolve a morte imediata das células do sítio primário de infecção, oferecendo resistência ao crescimento do patógeno. Muitas evidências sugerem a participação da mitocôndria neste processo de morte celular programa. O nim (Azadirachta indica) é conhecido devido as suas propriedades medicinais e inseticidas, sendo que os estudos sobre a ação inseticida dessa planta restringem-se a análise de seus mecanismos de ação sobre insetos e também de seus efeitos sobre trabalhadores rurais que fazem uso de produtos a base de nim. Entretanto não há na literatura pesquisada, trabalhos de seus impactos sobre o sistema vegetal. A partir dos resultados previamente obtidos em nosso laboratório e com as análises dos dados da literatura, consideramos de grande importância dar continuidade a esse estudo do efeito do nim como elicitor, avaliando quais mecanismos que levam ao fenômeno de resistência vegetal. O extrato de nim (EB) foi preparado a partir das sementes, sendo caracterizado bioquimicamente pela quantificação de compostos fenólicos, açúcares e proteínas. A atividade antioxidante foi avaliada sendo possível observar que o extrato das sementes de nim possui forte atividade antioxidante de maneira dose-dependente com IC50 de 14,85 mg/mL. Para os ensaios biológicos foi utilizado EB nas concentrações de 0,1 a 5 mg/mL isolado ou em associação com AS a 1 µmol/L ou 1 mmol/L. Para determinação da morte celular foi observado o efeito do EB nas concentrações de 5 e 0,1 mg/mL isolado ou em associação com AS 1 µmol/L nos tempos de 0 a 8 horas. Diante dos resultados foi observado que o EB na concentração de 0,1 mg/mL isolado ou em associação com AS 1 µmol/L foi capaz de causar morte celular em células de Rubus fruticosus de forma mais significativa do que o EB isolado ou em associação com AS na concentração de 5 mg/mL. No tempo de 8 horas, foi observado uma porcentagem de morte celular de 64 % para células elicitadas com EB 0,1 mg/mL isolado e 71 % para células elicitadas com EB 0,1 mg/mL em associação com AS. A diminuição da produção de EROs e da produção de AS endógeno bem como o aumento da produção de compostos fenólicos foi observado em células intactas elicitadas com EB isolado. No entanto quando a células foram elicitadas com EB em associação com AS observamos uma diminuição da produção de compostos fenólicos com o aumento da produção de AS endógeno. Em mitocôndrias isoladas foi avaliado o consumo de oxigênio, o potencial de membrana e a produção de EROs com o EB isolado e sua associação com AS 1 mmol/L. Foi observado que o EB isolado ou em associação com AS foi capaz de diminuir a velocidade de consumo de oxigênio pela cadeia respiratória sendo este efeito mais acentuado quando o nim foi administrado juntamente com AS, onde a porcentagem de inibição da velocidade de consumo de oxigênio pela cadeia respiratória na presença de EB em associação com AS foi de 79 % no estado 3 da respiração e 62 % no estado 4. Sobre o potencial de membrana observamos que o EB isolado ou em associação com AS foi capaz de diminuir o potencial de membrana, porém de forma pouco significativa. Para a produção de EROs observamos que o EB isolado foi capaz de diminuir a produção de EROs em mitocôndrias isoladas em cerca de 55 a 20 % na presença de antimicina A e 39 a 10 % na presença de rotenona, porém quando o EB foi administrado juntamente com AS observamos uma diminuição da produção de EROs somente para o EB nas concentrações de 0,5; 1 e 5 mg/mL. Com os resultados apresentados neste trabalho e os resultados obtidos anteriormente em nosso laboratório é possível sugerir que o extrato das sementes de nim possui um efeito protetor sobre células de Rubus fruticosus. / Plants, like other organisms, have the capacity to defend themselves against attack by pathogens. One of the responses triggered by pathogen recognition by plant cells is the hypersensitive response (HR), which involves the immediate death of cells in the primary site of infection, providing resistance to the pathogen growth. In this regard, it has been well established that mitochondria are involved in cell death. The neem tree (Azadirachta indica) is known due to its medicinal and insecticidal properties; studies on the insecticidal action of this plant had been restricted to the analysis of their action mechanisms on insects and their effects on rural workers who use neem-based products. However, its impact on plant systems has not been addressed. Considering previous results from our laboratory and literature data we assessed the effects of neem as elicitor, particularly the mechanisms leading to the phenomenon of plant resistance. The neem extract (EB) was prepared from the seeds, characterized biochemically by quantification of phenolic compounds, sugars and proteins. The extract showed strong dose-dependent antioxidant activity (IC50 of 14.85 mg/mL). EB concentrations of 0.1-5 mg/mL, alone or in association with 1 mol/L or 1 mmol/L SA (salicylic acid), were used for the biological assays. For cell death assays, EB was employed in concentrations of 0.1 and 5.0 mg/mL, alone or in association with 1 mol/L SA, during 0-8 hours. EB (0.1 mg/mL), alone or in association with 1 mol/L SA, induced Rubus fruticosus cell death more efficiently than EB alone or in association with 5 mg/mL SA. After 8 hours, a 64% of death of cells elicited with 0.1 mg/mL EB and 71% of death of cells elicited with 0.1 mg/mL EB in association with SA, was observed. Decrease in ROS generation and production of endogenous SA, as well as increased production of phenolic compounds, was observed in intact cells elicited with EB alone. However, when cells were elicited with EB in association with SA, a decreased production of phenolic compounds and an increased production of endogenous SA, was observed. In isolated mitochondria, it was measured oxygen consumption, membrane potential and ROS production for EB alone or in association with 1 mmol/L SA. In either conditions, EB decreased oxygen consumption by the respiratory chain, an effect more pronounced in association with SA: ~79 % inhibition for state 3 and ~ 62 % for state 4 respiration. Also, either neem alone or in association with SA decreased mitochondrial membrane potential, as well as ROS generation to an extent of 55-20% in the presence of antimycin A and 39-10% in the presence of rotenone; in association with SA, EB decreased ROS at 5, 1 and 0.5 mg/mL. Together with our previous study, these results suggest that neem seeds extract has a protective effect on Rubus fruticosus cells by scavenging, via phenolic compounds, reactive oxygen species generated by SA, thereby decreasing its action as cell death inducer.
3

Efeito do extrato de Azadirachta indica (nim) sobre resposta de hipersensibilidade mediada por ácido salicílico em células de Rubus fruticosus / Effect of Azadirachta indica extract (neem) on hypersensitivity response mediated by salicylic acid in cells of Rubus fruticosus.

Veronica Paviani 01 June 2010 (has links)
As plantas, assim como outros organismos, possuem a capacidade de se defenderem contra ataque de patógenos. Uma das respostas desencadeadas pelo reconhecimento do patógeno pelas células vegetais é a reação de hipersensibilidade (RH), que envolve a morte imediata das células do sítio primário de infecção, oferecendo resistência ao crescimento do patógeno. Muitas evidências sugerem a participação da mitocôndria neste processo de morte celular programa. O nim (Azadirachta indica) é conhecido devido as suas propriedades medicinais e inseticidas, sendo que os estudos sobre a ação inseticida dessa planta restringem-se a análise de seus mecanismos de ação sobre insetos e também de seus efeitos sobre trabalhadores rurais que fazem uso de produtos a base de nim. Entretanto não há na literatura pesquisada, trabalhos de seus impactos sobre o sistema vegetal. A partir dos resultados previamente obtidos em nosso laboratório e com as análises dos dados da literatura, consideramos de grande importância dar continuidade a esse estudo do efeito do nim como elicitor, avaliando quais mecanismos que levam ao fenômeno de resistência vegetal. O extrato de nim (EB) foi preparado a partir das sementes, sendo caracterizado bioquimicamente pela quantificação de compostos fenólicos, açúcares e proteínas. A atividade antioxidante foi avaliada sendo possível observar que o extrato das sementes de nim possui forte atividade antioxidante de maneira dose-dependente com IC50 de 14,85 mg/mL. Para os ensaios biológicos foi utilizado EB nas concentrações de 0,1 a 5 mg/mL isolado ou em associação com AS a 1 µmol/L ou 1 mmol/L. Para determinação da morte celular foi observado o efeito do EB nas concentrações de 5 e 0,1 mg/mL isolado ou em associação com AS 1 µmol/L nos tempos de 0 a 8 horas. Diante dos resultados foi observado que o EB na concentração de 0,1 mg/mL isolado ou em associação com AS 1 µmol/L foi capaz de causar morte celular em células de Rubus fruticosus de forma mais significativa do que o EB isolado ou em associação com AS na concentração de 5 mg/mL. No tempo de 8 horas, foi observado uma porcentagem de morte celular de 64 % para células elicitadas com EB 0,1 mg/mL isolado e 71 % para células elicitadas com EB 0,1 mg/mL em associação com AS. A diminuição da produção de EROs e da produção de AS endógeno bem como o aumento da produção de compostos fenólicos foi observado em células intactas elicitadas com EB isolado. No entanto quando a células foram elicitadas com EB em associação com AS observamos uma diminuição da produção de compostos fenólicos com o aumento da produção de AS endógeno. Em mitocôndrias isoladas foi avaliado o consumo de oxigênio, o potencial de membrana e a produção de EROs com o EB isolado e sua associação com AS 1 mmol/L. Foi observado que o EB isolado ou em associação com AS foi capaz de diminuir a velocidade de consumo de oxigênio pela cadeia respiratória sendo este efeito mais acentuado quando o nim foi administrado juntamente com AS, onde a porcentagem de inibição da velocidade de consumo de oxigênio pela cadeia respiratória na presença de EB em associação com AS foi de 79 % no estado 3 da respiração e 62 % no estado 4. Sobre o potencial de membrana observamos que o EB isolado ou em associação com AS foi capaz de diminuir o potencial de membrana, porém de forma pouco significativa. Para a produção de EROs observamos que o EB isolado foi capaz de diminuir a produção de EROs em mitocôndrias isoladas em cerca de 55 a 20 % na presença de antimicina A e 39 a 10 % na presença de rotenona, porém quando o EB foi administrado juntamente com AS observamos uma diminuição da produção de EROs somente para o EB nas concentrações de 0,5; 1 e 5 mg/mL. Com os resultados apresentados neste trabalho e os resultados obtidos anteriormente em nosso laboratório é possível sugerir que o extrato das sementes de nim possui um efeito protetor sobre células de Rubus fruticosus. / Plants, like other organisms, have the capacity to defend themselves against attack by pathogens. One of the responses triggered by pathogen recognition by plant cells is the hypersensitive response (HR), which involves the immediate death of cells in the primary site of infection, providing resistance to the pathogen growth. In this regard, it has been well established that mitochondria are involved in cell death. The neem tree (Azadirachta indica) is known due to its medicinal and insecticidal properties; studies on the insecticidal action of this plant had been restricted to the analysis of their action mechanisms on insects and their effects on rural workers who use neem-based products. However, its impact on plant systems has not been addressed. Considering previous results from our laboratory and literature data we assessed the effects of neem as elicitor, particularly the mechanisms leading to the phenomenon of plant resistance. The neem extract (EB) was prepared from the seeds, characterized biochemically by quantification of phenolic compounds, sugars and proteins. The extract showed strong dose-dependent antioxidant activity (IC50 of 14.85 mg/mL). EB concentrations of 0.1-5 mg/mL, alone or in association with 1 mol/L or 1 mmol/L SA (salicylic acid), were used for the biological assays. For cell death assays, EB was employed in concentrations of 0.1 and 5.0 mg/mL, alone or in association with 1 mol/L SA, during 0-8 hours. EB (0.1 mg/mL), alone or in association with 1 mol/L SA, induced Rubus fruticosus cell death more efficiently than EB alone or in association with 5 mg/mL SA. After 8 hours, a 64% of death of cells elicited with 0.1 mg/mL EB and 71% of death of cells elicited with 0.1 mg/mL EB in association with SA, was observed. Decrease in ROS generation and production of endogenous SA, as well as increased production of phenolic compounds, was observed in intact cells elicited with EB alone. However, when cells were elicited with EB in association with SA, a decreased production of phenolic compounds and an increased production of endogenous SA, was observed. In isolated mitochondria, it was measured oxygen consumption, membrane potential and ROS production for EB alone or in association with 1 mmol/L SA. In either conditions, EB decreased oxygen consumption by the respiratory chain, an effect more pronounced in association with SA: ~79 % inhibition for state 3 and ~ 62 % for state 4 respiration. Also, either neem alone or in association with SA decreased mitochondrial membrane potential, as well as ROS generation to an extent of 55-20% in the presence of antimycin A and 39-10% in the presence of rotenone; in association with SA, EB decreased ROS at 5, 1 and 0.5 mg/mL. Together with our previous study, these results suggest that neem seeds extract has a protective effect on Rubus fruticosus cells by scavenging, via phenolic compounds, reactive oxygen species generated by SA, thereby decreasing its action as cell death inducer.

Page generated in 0.099 seconds