• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 204
  • 66
  • 22
  • 20
  • 11
  • 7
  • 4
  • 4
  • 4
  • 3
  • 1
  • Tagged with
  • 446
  • 157
  • 133
  • 118
  • 91
  • 90
  • 67
  • 61
  • 60
  • 57
  • 49
  • 47
  • 42
  • 40
  • 39
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
51

HYPERSPECTRAL IMAGE COMPRESSION

Hallidy, William H., Jr., Doerr, Michael 10 1900 (has links)
International Telemetering Conference Proceedings / October 25-28, 1999 / Riviera Hotel and Convention Center, Las Vegas, Nevada / Systems & Processes Engineering Corporation (SPEC) compared compression and decompression algorithms and developed optimal forms of lossless and lossy compression for hyperspectral data. We examined the relationship between compression-induced distortion and additive noise, determined the effect of errors on the compressed data, and showed that the data could separate targets from clutter after more than 50:1 compression.
52

Combined Spatial-Spectral Processing of Multisource Data Using Thematic Content

Filiberti, Daniel Paul January 2005 (has links)
In this dissertation, I design a processing approach, implement and test several solutions to combining spatial and spectral processing of multisource data. The measured spectral information is assumed to come from a multispectral or hyperspectral imaging system with low spatial resolution. Thematic content from a higher spatial resolution sensor is used to spatially localize different materials by their spectral signature. This approach results in both spectralunmixing and sharpening, a spatial-spectral fusion. The main real imagery example, fusion of polarimetric synthetic aperture radar (SAR) with hyperspectral imagery, poses a unique challenge due to the phenomenological differences between the sensors.Theoretical models for electro-optical image formation and scene reflectivity are shown to lead naturally to a set of pixel mixing equations. Several solutions for the spatial unmixing form of these equations are examined, based on the method of least squares. In particular, a method for introducing thematic content into the solution for spatial unmixing is defined using weighted least squares. Finally, and most significantly, a spatial-spectral fusion algorithm based on the theory of projection onto convex sets (POCS) is presented. Theoretical aspects of POCS are briefly discussed, showing how the use of constraints in the form of closed convex sets drives the solution. Then, constraints are derived that are intimately tied to the underlying theoretical models. Simulated imagery is used to characterize the different constraintcombinations that can be used in a POCS-based fusion algorithm.The fusion algorithms are applied to real imagery from two data sets, a Landsat ETM+ scene over Tucson, AZ and an AVIRIS/AirSAR scene over Tombstone, AZ. The results of the fusion are analyzed using scattergrams and correlation statistics. The POCS-based fusion algorithm is shown to produce a reasonable fusion of the AVIRIS/AirSAR data, with some sharpening of spatial-spectral features.
53

The Design, Fabrication, and Calibration of a Fiber Filter Spectrometer

Hancock, Jed J. January 2012 (has links)
A fiber filter spectrometer (FFS) is a novel imaging spectrometer design concept which uses the proximity filter method to create small, lightweight, and cost effective instruments with no detectable spectral crosstalk. An FFS sensor is created by coating the ends of a fiber optic image guide (FIG) with a spectral filter, the FIG is then coupled to a detector array. Using the FIG as the spectral filter substrate reduces the optical crosstalk to the point that it is inconsequential. This work describes the modeling, fabrication, and calibration of a hyperspectral FFS sensor. The image and spectral quality performance metrics are successfully predicted by the FFS model. The laboratory calibration of the instrument validates that the FIG has no substantial impact on the instrument image quality and spectral performance. The FFS concept eliminates the potential for spectral crosstalk and provides the advantages of a less complex imaging spectrometer instrument design with low mass and volume.
54

Hyperspectral Remote Sensing and Field Measurements for Forest Characteristics - A Case Study in the Hainich National Park, Central Germany

Aberle, Henning 01 November 2016 (has links)
No description available.
55

Využití hyperspektrálních dat k detekci a klasifikaci vybraných antropogenních materiálů / Use of hyperspectral data for detection and classification of selected anthropogenic materials

Novotná, Kateřina January 2013 (has links)
The thesis deals with use of hyperspectral data from APEX and AISA sensors for detection and classification of anthropogenic materials in the areas of Čáslav, Rokytnice nad Jizerou and Harrachov. The main goal is to propose methodology for the detection and classification of roof materials and road surface materials based on established spectral libraries. Another goal is to evaluate applicability of spectral libraries for classification, to compare possibilities of hyperspectral data with larger and smaller spectral range and to create maps of anthropogenic materials above. The methodological approach including masks of anthropogenic materials for roads surface materials and roof materials creation, settings of four classifications algorithms (Linear Spectral Unmixing, Multiple endmember spectral mixture analysis, Spectral Angle Mapper, Spectral Information Divergence) parameters and assessment of classification results, is in the methodology part. The results are visualized and evaluated using overall accuracy and percentage of classified pixels. Finally the results are compared with existing studies and possible improvements for further research are proposed. Powered by TCPDF (www.tcpdf.org)
56

Mitigating discontinuities in segmented Karhunen-Loeve Transforms

Stadnicka, Monika, Blanes, Ian, Serra-Sagrista, Joan, Marcellin, Michael W. 09 1900 (has links)
The Karhunen-Loeve Transform (KLT) is a popular transform used in multiple image processing scenarios. Sometimes, the application of the KLT is not carried out as a single transform over an entire image Rather, the image is divided into smaller spatial regions (segments), each of which is transformed by a smaller dimensional KLT. Such a situation may penalize the transform efficiency. An improvement for the segmented KLT, aiming at mitigating discontinuities arising on the edge of adjacent regions, is proposed in this paper. In the case of moderately varying image regions, discontinuities occur as the consequence of disregarded similarity between transform domains, as the order and sign of eigenvectors in the transform matrices are mismatched. In the proposed method, the KLT is adjusted to guarantee the best achievable similarity via the optimal assignment and sign correspondence for eigenvectors. Experimental results indicate that the proposed transform improves the similarity between transform domains, and reduces RMSE on the edge of adjacent regions. In consequence, images processed by the adjusted KLT present better cohesion and continuity between independently transformed regions.
57

Semantic Assistance for Data Utilization and Curation

Becker, Brian J 06 August 2013 (has links)
We propose that most data stores for large organizations are ill-designed for the future, due to limited searchability of the databases. The study of the Semantic Web has been an emerging technology since first proposed by Berners-Lee. New vocabularies have emerged, such as FOAF, Dublin Core, and PROV-O ontologies. These vocabularies, combined, can relate people, places, things, and events. Technologies developed for the Semantic Web, namely the standardized vocabularies for expressing metadata, will make data easier to utilize. We gathered use cases for various data sources, from human resources to big enterprise. Most of our use cases reflect real-world data. We developed a software package for transforming data into these semantic vocabularies, and developed a method of querying via graphical constructs. The development and testing proved itself to be useful. We conclude that data can be preserved or revived through the use of the metadata techniques for the Semantic Web.
58

Exploitation de la parcimonie pour la détection de cibles dans les images hyperspectrales / Exploitation of Sparsity for Hyperspectral Target Detection

Bitar, Ahmad 06 June 2018 (has links)
Le titre de cette thèse de doctorat est formé de trois mots clés: parcimonie, image hyperspectrale, et détection de cibles. La parcimonie signifie généralement « petit en nombre ou quantité, souvent répartie sur une grande zone ». Une image hyperspectrale est constituée d'une série d'images de la même scène spatiale, mais prises dans plusieurs dizaines de longueurs d'onde contiguës et très étroites, qui correspondent à autant de "couleurs". Lorsque la dimension spectrale est très grande, la détection de cibles devient délicate et caractérise une des applications les plus importantes pour les images hyperspectrales. Le but principal de cette thèse de doctorat est de répondre à la question « Comment et Pourquoi la parcimonie peut-elle être exploitée pour détecter de cibles dans les images hyperspectrales ? ». La réponse à cette question nous a permis de développer des méthodes de détection de cibles prenant en compte l'hétérogénéité de l'environnement, le fait que les objets d'intérêt sont situés dans des parties relativement réduites de l'image observée et enfin que l'estimation de la matrice de covariance d'un pixel d'une image hyperspectrale peut être compliquée car cette matrice appartient à un espace de grande dimension. Les méthodes proposées sont évaluées sur des données synthétiques ainsi que réelles, dont les résultats démontrent leur efficacité pour la détection de cibles dans les images hyperspectrales. / The title of this PhD thesis is formed by three keywords: sparsity, hyperspectral image, and target detection. Sparsity is a word that is used everywhere and in everyday life. It generally means « small in number or amount, often spread over a large area ». A hyperspectral image is a three dimensional data cube consisting of a series of images of the same spatial scene in a contiguous and multiple narrow spectral wavelength (color) bands. According to the high spectral dimensionality, target detection is not surprisingly one of the most important applications in hyperspectral imagery. The main objective of this PhD thesis is to answer the question « How and Why can sparsity be exploited for hyperspectral target detection? ». Answering this question has allowed us to develop different target detection methods that mainly take into consideration the heterogeneity of the environment, the fact that the total image area of all the targets is very small relative to the whole image, and the estimation challenge of the covariance matrix (surrounding the test pixel) in large dimensions. The proposed mehods are evaluated on both synthetic and real experiments, the results of which demonstrate their effectiveness for hyperspectral target detection.
59

Exploiting Sparsity and Dictionary Learning to Efficiently Classify Materials in Hyperspectral Imagery

Pound, Andrew E. 01 May 2014 (has links)
Hyperspectral imaging (HSI) produces spatial images with pixels that, instead of consisting of three colors, consist of hundreds of spectral measurements. Because there are so many measurements for each pixel, analysis of HSI is difficult. Frequently, standard techniques are used to help make analysis more tractable by representing the HSI data in a different manner. This research explores the utility of representing the HSI data in a learned dictionary basis for the express purpose of material identification and classification. Multiclass classification is performed on the transformed data using the RandomForests algorithm. Performance results are reported. In addition to classification, single material detection is considered also. Commonly used detection algorithm performance is demonstrated on both raw radiance pixels and HSI represented in dictionary-learned bases. Comparison results are shown which indicate that detection on dictionary-learned sparse representations perform as well as detection on radiance. In addition, a different method of performing detection, capitalizing on dictionary learning is established and performance comparisons are reported, showing gains over traditional detection methods.
60

Ecological indicators, historical land use, and invasive species detection in the lower Iowa River floodplain

Johnson, Ryan Allan 01 May 2014 (has links)
No description available.

Page generated in 0.1768 seconds