• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 85
  • 45
  • 26
  • 14
  • 7
  • 6
  • 4
  • 3
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 227
  • 59
  • 56
  • 53
  • 44
  • 36
  • 25
  • 20
  • 18
  • 17
  • 17
  • 16
  • 15
  • 15
  • 15
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
61

High Temperature Drives Topoisomerase Mediated Chromosomal Break Repair Pathway Choice.

Ashour, M.E., Allam, W., Elsayed, W., Atteya, R., Elserafy, M., Magdeldin, S., Hassan, M.K., El-Khamisy, Sherif 01 November 2023 (has links)
Yes / Cancer-causing mutations often arise from inappropriate DNA repair, yet acute exposure to DNA damage is widely used to treat cancer. The challenge remains in how to specifically induce excessive DNA damage in cancer cells while minimizing the undesirable effects of genomic instability in noncancerous cells. One approach is the acute exposure to hyperthermia, which suppresses DNA repair and synergizes with radiotherapy and chemotherapy. An exception, however, is the protective effect of hyperthermia on topoisomerase targeting therapeutics. The molecular explanation for this conundrum remains unclear. Here, we show that hyperthermia suppresses the level of topoisomerase mediated single- and double-strand breaks induced by exposure to topoisomerase poisons. We further uncover that, hyperthermia suppresses hallmarks of genomic instability induced by topoisomerase targeting therapeutics by inhibiting nuclease activities, thereby channeling repair to error-free pathways driven by tyrosyl-DNA phosphodiesterases. These findings provide an explanation for the protective effect of hyperthermia from topoisomerase-induced DNA damage and may help to explain the inverse relationship between cancer incidence and temperature. They also pave the way for the use of controlled heat as a therapeutic adjunct to topoisomerase targeting therapeutics.
62

A Novel Device for Delivering Combined Partial Breast Irradiation and Partial Breast Hyperthermia

White, Todd A. 16 May 2012 (has links)
No description available.
63

Hyperthermic ablation of MDA-MB-231 human mammary gland adenocarcinoma mediated by the photothermal effect of poly(acrylic acid) coated magnetite nanoparticles, efficacy and applicability for novel cancer treatment

Dunn, Andrew W. January 2013 (has links)
No description available.
64

Photothermal effect of PS coated Fe3O4 nanoparticles via near-infrared laser and effect of mimic body tissue depth on hyperthermic ablation of MDA-MB-231

Zhang, Yu January 2015 (has links)
No description available.
65

Cell mediated therapeutics for cancer treatment: tumor homing cells as therapeutic delivery vehicles

Balivada, Sivasai January 1900 (has links)
Doctor of Philosophy / Department of Anatomy and Physiology / Deryl L. Troyer / Many cell types were known to have migratory properties towards tumors and different research groups have shown reliable results regarding cells as delivery vehicles of therapeutics for targeted cancer treatment. Present report discusses proof of concept for 1. Cell mediated delivery of Magnetic nanoparticles (MNPs) and targeted Magnetic hyperthermia (MHT) as a cancer treatment by using in vivo mouse cancer models, 2. Cells surface engineering with chimeric proteins for targeted cancer treatment by using in vitro models. 1. Tumor homing cells can carry MNPs specifically to the tumor site and tumor burden will decrease after alternating magnetic field (AMF) exposure. To test this hypothesis, first we loaded Fe/Fe3O4 bi-magnetic NPs into neural progenitor cells (NPCs), which were previously shown to migrate towards melanoma tumors. We observed that NPCs loaded with MNPs travel to subcutaneous melanoma tumors. After alternating magnetic field (AMF) exposure, the targeted delivery of MNPs by the NPCs resulted in a mild decrease in tumor size (Chapter-2). Monocytes/macrophages (Mo/Ma) are known to infiltrate tumor sites, and also have phagocytic activity which can increase their uptake of MNPs. To test Mo/Ma-mediated MHT we transplanted Mo/Ma loaded with MNPs into a mouse model of pancreatic peritoneal carcinomatosis. We observed that MNP-loaded Mo/Ma infiltrated pancreatic tumors and, after AMF treatment, significantly prolonged the lives of mice bearing disseminated intraperitoneal pancreatic tumors (Chapter-3). 2. Targeted cancer treatment could be achieved by engineering tumor homing cell surfaces with tumor proteases cleavable, cancer cell specific recombinant therapeutic proteins. To test this, Urokinase and Calpain (tumor specific proteases) cleavable; prostate cancer cell (CaP) specific (CaP1 targeting peptide); apoptosis inducible (Caspase3 V266ED3)- rCasp3V266ED3 chimeric protein was designed in silico. Hypothesized membrane anchored chimeric protein (rCasp3V266ED3, rMcherry red) plasmids were constructed. Membrane anchoring and activity of designed proteins were analyzed in RAW264.7 Mo/Ma and HEK293 cells in vitro. Further, Urokinase (uPA) mediated cleavage and release of rCasp3V266ED3 from engineered cells was tested (Chapter-4). Animal models for cancer therapy are invaluable for preclinical testing of potential cancer treatments. Final chapter of present report shows evidence for immune-deficient line of pigs as a model for human cancers (Chapter-5)
66

Non-Invasive Microwave Hyperthermia

Habash, Riadh W Y 04 1900 (has links)
Presented in this thesis are the following theoretical investigations carried out on the non-invasive microwave hyperthermia of malignant tumours in the human body: Fundamental concepts of electromagnetic wave propagation through a biomass and its interaction with it, are discussed. Various types of applicators used for producing hyperthermia in a biomass, are also discussed. Propagation of a uniform plane electromagnetic wave through a human body is investigated for the general case of oblique incidence. Various models used for the human body have been discussed and the planar multilayer model has been chosen for this study. Reflection and transmission coefficients for both the parallel and perpendicular linear polarisations of the wave, have been determined. For normal incidence, power transfer ratio at the muscle has been defined and calculated at 433, 915 and 2450 MHz (ISM frequencies). Efects of skin thickness and also of fat thickness, on the power transfer ratio at muscle, have been studied. Effects of the thickness and dielectric constant of a bolus, and also of the dielectric constant of an initial layer, on the power transfer ratio, have been studied and their optimum values obtained at the ISM frequencies. For microwave hyperthermia, 915 MHz is recommended as the frequency of operation. Steady-state solution of the bioheat transfer equation has been obtained, assuming the biomass to be a semi-infinite homogeneous medium. Effects of various physical parameters on the temperature profile in the biomass, have been studied. Also studied is the effect of the surface temperature on the magnitude, location and the width of the temperature peak attained in the biomass. A method to determine the microwave power and the surface temperature required to produce a prescribed temperature profile in the biomass, has been developed. The transient-state solution of the bioheat transfer equation has been obtained to study the building up of the temperature profile. Procedures for the design of an open-ended rectangular metal waveguide applicator and for estimating the total microwave power requirement to produce hyperthermia in the human body, have been developed. Performance of the applicators employing linear as well as planar arrays of open-ended rectangular metal waveguide antennas, has also been studied. In order to reduce the overall physical size of the applicators, filling up of the feed waveguide with a high dielectric constant but low loss material is suggested. A simple method of obtaining the elements of the array by partitioning a large aperture by using metal walls has been adopted. Calculation of the total microwave power required by various applicators for producing hyperthermia at various depths in a biomas, have been made and a comparison of the performance of various applicators, has been presented.
67

Meeting the challenges: carbon-hydrogen bond activation and cancer treatment

Wang, Hongwang January 1900 (has links)
Doctor of Philosophy / Department of Chemistry / Stefan Bossmann / My thesis is divided into two parts. The first part is focused on studies of N-heterocyclic carbene (NHC) palladium(IV) intermediates, which are involved in oxidative addition mediated C-C, and C-O bond formation processes as well as in C-Cl bond forming reactions via a reductive elimination process. Bis-NHC-Pd(II) complexes have been reported as effective catalysts to mediate direct conversion of methane into methanol. However, a H-D exchange study revealed that the bis-NHC-Pd(II) complexes are not the active species responsible for the C-H bond activation reaction. This unexpected result implies that the high oxidation state bis- NHC-Pd(IV) species may be the real catalyst! The oxidative addition of methyl iodide to the bis- NHC-Pd(II)-Me2 complex led to the successful observation of the formation of a transient trimethyl bis-NHC-Pd(IV) intermediate by both 1H-NMR and 13C-NMR spectroscopy. Different oxidants such as O2, PhI(OAc)2, PhI(OTFA)2 and Cl2 reacted with the bis-NHC-Pd(II)-Me2 complex, and competitive C-C and C-O bond formations, as well as C-C and C-Cl bond formations were observed. Dioxygen triggered C-C bond formation under dry condition and both C-C and C-O bond formation in the presence of H2O gave strong indications that the bis-NHCPd( II)-Me2 complex can be oxidized to a bis-NHC-Pd(IV) intermediate by dioxygen. The reaction between the hypervalent iodine regents PhI(OAc)2 and PhI(OTFA)2 and the bis-NHCPd( II)-Me2 complex gave only reductive elimination products. Therefore, this system can act as a model system, which is able to providing valuable information of the product forming (functionalization) step of the C-H bond activation system. The reaction between chlorine and the bis-NHC-Pd(II)-Me2 complex resulted in a relatively stable bis-NHC-Pd(IV)-Cl4 complex, which was characterized by 1H-NMR spectroscopy and mass spectroscopy. The structure of bis- NHC-Pd(IV)-Cl4 was unambiguously established by X-ray crystallography. The second part of this thesis describes the synthesis of functionalized bimagnetic core/shell iron/iron oxide nanoparticles for the treatment of cancer. Biocompatible dopamineoligoethylene glycol functionalized bimagnetic core/shell Fe/Fe3O4 nanoparticles were prepared via ligand exchange, and purified by repeated dispersion/magneto-precipitation cycles. A porphyrin (TCPP) has been tethered to the stealth nanoparticles to enhance their uptake by tumor cells and (neural) stem cells. The stealth nanoparticles have been delivered in a mouse model to tumor sites intravenously by using the EPR (enhanced permeation and retention) effect. Magnetic hyperthermia proved to be very effective against B16-F10 mouse melanomas in Charles River black mice. After hyperthermia, the nanoparticles have shown a significant effect on the growth of tumor (up to 78% growth inhibition).
68

Approaches for improved precision of microwave thermal therapy

McWilliams, Brogan January 1900 (has links)
Master of Science / Department of Electrical and Computer Engineering / Punit Prakash / Thermal therapies employing interstitial microwave applicators for hyperthermia or ablation are in clinical use for treatment of cancer and benign disease in various organs. However, treatment of targets in proximity to critical structures with currently available devices is risky due to unfocused deposition of energy into tissue. For successful treatment, complete thermal coverage of the tumor and margin of surrounding healthy tissue must be achieved, while precluding damage to critical structures. This thesis investigates two approaches to increase precision of microwave thermal therapy. Chapter 2 investigates a novel coaxial antenna design for microwave ablation (MWA) employing a hemi-cylinderical reflector to achieve a directional heating pattern. A proof of concept antenna with an S₁₁ of -29 dB at 2.45 GHz was used in ex vivo experiments to characterize the antennas’ heating pattern with varying input power and geometry of the reflector. Ablation zones up to 20 mm radially were observed in the forward direction, with minimal heating (less than 4 mm) behind the reflector. Chapter 3 investigates the use of magnetic nanoparticles (MNP) of varying size and geometry for enhancing microwave tissue heating. A conventional dipole, operating at 2.45 GHz and radiating 15 W, was inserted into a 20 mm radius sphere of distributed MNPs and heating measurements were taken 5 mm, 10 mm, and 15 mm radially away. A heating rate of 0.08°C/s was observed at 10 mm, an increase of 2-4 times that of the control measurement. These approaches provide strong potential for improving spatial control of tissue heating with interstitial and catheter-based microwave antennas.
69

A/C magnetic hyperthermia of melanoma mediated by iron(0)/iron oxide core/shell magnetic nanoparticles : a mouse study / AC magnetic hyperthermia of melanoma mediated by iron(0)/iron oxide core/shell magnetic nanoparticles

Balivada, Sivasai January 1900 (has links)
Master of Science / Department of Anatomy and Physiology / Deryl L. Troyer / There is renewed interest in magnetic hyperthermia as a treatment modality for cancer, especially when it is combined with other more traditional therapeutic approaches, such as the co-delivery of anticancer drugs or photodynamic therapy. The influence of bimagnetic nanoparticles (MNPs) combined with short external alternating magnetic field (AMF) exposure on the growth of subcutaneous mouse melanomas (B16-F10) was evaluated. Bimagnetic Fe/Fe3O4 core/shell nanoparticles were designed for cancer targeting after intratumoral or intravenous administration. Their inorganic center was protected against rapid biocorrosion by organic dopamine-oligoethylene glycol ligands. TCPP (4-tetracarboxyphenyl porphyrin) units were attached to the dopamine-oligoethylene glycol ligands. The magnetic hyperthermia results obtained after intratumoral injection indicated that micromolar concentrations of iron given within the modified core-shell Fe/Fe3O4 nanoparticles caused a significant anti-tumor effect on murine B16-F10 melanoma with three short 10-minute AMF exposures. There is a decrease in tumor size after intravenous administration of the MNPs followed by three consecutive days of AMF exposure. These results indicate that intratumoral administration of surface-modified MNPs can attenuate mouse melanoma after AMF exposure. Moreover, intravenous administration of these MNPs followed by AMF exposure attenuates melanomas, indicating that adequate amounts of TCPP-labeled stealth Fe/Fe3O4 nanoparticles can accumulate in murine melanoma after systemic delivery to allow effective magnetic hyperthermic therapy in a rodent tumor mode.
70

Liposomal Drug Delivery Mediated by MR-guided High Intensity Focused Ultrasound: Drug Dose Painting and Influence of Local Tissue Transport Parameters

Yarmolenko, Pavel Sergeyevich January 2014 (has links)
<p>Use of chemotherapeutics in treatment of solid tumors suffers from insufficient and heterogeneous drug delivery, systemic toxicity and lack of knowledge of delivered drug concentration. The overall objectives of this work were: 1) to address these shortcomings through development and characterization of a treatment system capable of real-time spatiotemporal control of drug distribution and 2) to investigate the role of MR-image-able tissue transport parameters in predicting drug distribution following hyperthermia-triggered drug release from nanoparticles. Towards these objectives, a combination of potentially synergetic technologies was used: 1) image-able low temperature-sensitive liposomes (iLTSLs) for drug delivery, 2) quantitative drug delivery and transport parameter imaging with magnetic resonance imaging (MRI), and 3) control over drug release with magnetic resonance-guided high intensity focused ultrasound (MR-HIFU). The overall hypothesis of this work is that the drug distribution in the targeted zone spatially correlates with the image-able transport-related parameters as well as contrast enhancement due to release of contrast agent during treatment.</p><p>We began by developing and characterizing iLTSLs, which were designed using a lipid formulation similar to one that is in clinical trials in the US (ThermoDox®) and a gadolinium-based MR contrast agent that is in widespread clinical use (Prohance®) and least likelihood of toxicity due to nephrogenic systemic fibrosis (NSF). The resulting liposome was found to stably encapsulate both an anthracycline chemotherapeutic, doxorubicin, and the MR contrast agent. Release rates were similar for these two species in physiologic buffer as well as in human plasma. The next step towards control and imaging of release with this drug delivery system (DDS) was development of algorithms that allowed for large-volume mild hyperthermia with MR-HIFU that would be required to move this combination of technologies into the clinic.</p><p>Optimal drug delivery with iLTSL requires a sustained period of heating of the entire target to the range of temperatures that are optimal for liposomal release and maintenance of perfusion (40 - 45 &#61616;C). The MR-HIFU technology was developed and used mainly for rapid thermal ablation or mechanical disruption of tissue in small ellipsoid volumes. Variability and size of common clinical lesions called for modifications that would enable stable conformal heating of large tumor volumes to the sub-ablative temperature range of mild hyperthermia (40 - 45 &#61616;C). Therefore, we set out to develop an algorithm that would allow rapid attainment and maintenance of mild hyperthermia in larger volumes of variable shape that were typically encountered in the clinic. We approached this goal through a series of successive steps that addressed different aspects of mild hyperthermia treatment: 1) controlled heating to mild hyperthermia, 2) conformity of heating and 3) ability to heat large volumes.</p><p>To achieve controlled heating to mild hyperthermia we implemented a simple binary mild hyperthermia feedback mechanism that adequately maintained mild hyperthermia for extended periods of time in small ellipsoidal volumes. We then developed a conformal small-volume mild hyperthermia algorithm that could provide spatial control over heating in an environment with spatially heterogeneous perfusion. This algorithm used electronic steering of the HIFU focus to heat each MR image voxel with different power, depending on temperature measured within that voxel. Finally, to heat large volumes conformally, we developed an algorithm that combined mechanical displacement of the MR-HIFU transducer (to cover large areas) with electronic deflection of the HIFU beam (to heat sub-volumes conformally). This advancement allowed us to quickly attain mild hyperthermia (<8.1 min to steady state) in larger volumes (cross-sectional area = 8.4 cm, ~12 times larger than previous methods).</p><p>Following their characterization, we examined iLTSL pharmacokinetics and combined MR-HIFU large volume mild hyperthermia with iLTSL to deliver doxorubicin to large Vx2 carcinomas in the hindlimb muscle of rabbits. To determine MR image-able correlates to the intratumoral drug distribution, we assessed the spatial pattern of drug distribution with fluorescence microscopy and examined spatial correlations of this pattern to several parameters measured with MRI, including the spatial distributions of temperature, contrast enhancement following injection of iLTSL, dynamic contrast-enhanced MRI (DCE-MRI) parameters, and maps of apparent diffusion coefficient (ADC). Dynamic contrast-enhanced MRI parameters have been used extensively in literature to approximate a mixture of parameters critical to drug delivery, such as perfusion (F), permeability-vascular surface area product (PS) and vascular volume and ADC has been previously correlated with cellular density in tumors. Possible utility of such spatial correlations was examined for future use in treatment planning, intraprocedural feedback control and post-treatment evaluation.</p><p>Highly perfused peripheral regions of Vx2 tumors in rabbit hindlimb displayed high Ktrans and ve, indicative of high perfusion. Maps of ADC obtained with low b-values also showed high ADC in the periphery of these tumors, indicating high perfusion there. ADC maps that were weighted more towards diffusion (using higher b-values) showed that diffusion was largest in the tumor core, indicating destruction of the cellular membranes and greater mobility of water. Microscopic examination of excised tumors was spatially registered to the MRI datasets and showed that most of the tumor core is necrotic, though some highly vascularized and viable tissue was present in strands or segments that traversed the necrotic regions. Those segments also showed bright doxorubicin fluorescence following treatment with MR-HIFU and iLTSL. The two control groups - free drug and iLTSL without mild hyperthermia - showed minimal to no doxorubicin fluorescence in the tumor.</p><p>Susceptibility effects due to use of contrast agent caused large errors (up to 15 °C) in MR thermometry measurements. To address this phenomenon, experiments were designed to arrive at steady state heating (target temperature = 41 °C), and employ an algorithm to learn the spatiotemporal distribution of power that was needed to maintain steady state heating. This heating pattern was then played back several times to verify maintenance of steady state, and if satisfactory, image-able liposomes were injected. Since temperature feedback was replaced by the learned steady-state heating, injection of image-able liposomes likely did not alter the heating performance. Following injection, changes in T1 and magnetic susceptibility were most pronounced in regions that previously showed greatest enhancement during DCE-MRI and displayed larger values of ADC with perfusion-weighted, low b-value scans. Maps of T1 were obtained in real time using a variable flip angle sequence during heating, and were corrected for inhomogeneity of the B1 field and calibrated against a more accurate, T1 mapping technique.</p><p>After treatment with MR-HIFU and iLTSL, the drug was preferentially distributed in the viable tissue, in and around the tumor. Doxorubicin fluorescence was greatest in zones that were heated, though the drug distribution did not display a clear boundary between heated and unheated tissue. While iLTSL provided intraprocedural feedback via enhancement of T1-weighted image intensity, susceptibility-related effects of iLTSL on MR thermometry complicate their prospects of clinical use, where precise temperature feedback is required for control of therapy and MR thermometry techniques that are in widespread use would be affected. Spatial correlations between drug delivery with iLTSL and MR-imageable parameters may serve as a predictive tool to identify areas that will not receive adequate drug. Such a-priori knowledge of correlates to the approximate tumor drug distribution has the potential to inform treatment planning by revealing the extent to which drug dose could be painted with a combination of LTSL and MR-HIFU. These studies point to an adjustment of course in further development of drug dose painting this combination of technologies, towards informing treatment planning, and not only painting the dose, but predicting it. These results also point to the need to develop rational combinations other treatments, such as ablation and radiation, to treat regions that will not receive sufficient drug.</p> / Dissertation

Page generated in 0.0862 seconds