• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 37
  • 21
  • 5
  • 3
  • 2
  • 2
  • 2
  • 1
  • Tagged with
  • 80
  • 80
  • 37
  • 37
  • 16
  • 14
  • 13
  • 12
  • 12
  • 11
  • 10
  • 10
  • 9
  • 8
  • 8
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Cardiac Troponin T Mutation in Familial Cardiomyopathy With Variable Remodeling and Restrictive Physiology

Menon, S., Michels, V. V., Pellikka, P. A., Ballew, J. D., Karst, M. L., Herron, K. J., Nelson, S. M., Rodeheffer, R. J., Olson, Timothy M. 21 October 2008 (has links)
We identified a unique family with autosomal dominant heart disease variably expressed as restrictive cardiomyopathy (RCM), hypertrophic cardiomyopathy (HCM), and dilated cardiomyopathy (DCM), and sought to identify the molecular defect that triggered divergent remodeling pathways. Polymorphic DNA markers for nine sarcomeric genes for DCM and/ or HCM were tested for segregation with disease. Linkage to eight genes was excluded, but a cardiac troponin T (TNNT2) marker cosegregated with the disease phenotype. Sequencing of TNNT2 identified a heterozygous missense mutation resulting in an I79N substitution, inherited by all nine affected family members but by none of the six unaffected relatives. Mutation carriers were diagnosed with RCM (n = 2), non-obstructive HCM (n = 3), DCM (n = 2), mixed cardiomyopathy (n = 1), and mild concentric left ventricular hypertrophy (n = 1). Endomyocardial biopsy in the proband revealed non-specific fibrosis, myocyte hypertrophy, and no myofibrillar disarray. Restrictive Doppler filling patterns, atrial enlargement, and pulmonary hypertension were observed among family members regardless of cardiomyopathy subtype. Mutation of a sarcomeric protein gene can cause RCM, HCM, and DCM within the same family, underscoring the necessity of comprehensive morphological and physiological cardiac assessment in familial cardiomyopathy screening.
12

Penetrance of Hypertrophic Cardiomyopathy in At-Risk Children and Young Adults

Meyer, Tyler J. January 2018 (has links)
No description available.
13

Development of a Genetic Testing Report Supplement for Patients with Hypertrophic Cardiomyopathy Who Receive Uninformative Results.

Nightingale, Brooke Moriarty 14 August 2018 (has links)
No description available.
14

Hypertrophic Cardiomyopathy Genotype Prediction Models in a Pediatric Population

Newman, Randa E. 28 June 2016 (has links)
No description available.
15

Studies on Myocardial Funny Channels and the Funny Current Inhibitor Ivabradine in Healthy Cats and Cats with Hypertrophic Cardiomyopathy

Riesen, Sabine C. 22 October 2010 (has links)
No description available.
16

Plasma N-terminal Proatrial Natriuretic Peptide Concentration in Cats with Hypertrophic Cardiomyopathy

MacLean, Heidi Norma 26 March 2004 (has links)
Objective: We sought to determine N-terminal proatrial natriuretic peptide concentrations [Nt-proANP] in plasma from cats with hypertrophic cardiomyopathy (HCM). Secondarily, we wished to evaluate the relationship between [Nt-proANP] and echocardiographic variables. Methods: Venous blood samples were obtained from seventeen cats with HCM and from nineteen healthy cats. Plasma [Nt-proANP] was determined using an ELISA assay. The relationship between plasma [Nt-proANP] and M-mode, 2-dimensional and Doppler echocardiographic variables was evaluated. Cats that were hyperthyroid or had evidence of renal disease were excluded from the study. Results: The mean plasma [Nt-proANP] was higher in cats with HCM (3.81 +/- 1.23 pmol/l) than in control cats (3.08 +/- 1.41 pmol/l); however, this difference was not statistically significant (p=0.17). There was a significant correlation between plasma [Nt-proANP] and left ventricular posterior wall thickness (r = 0.42; p=0.01). Additionally, plasma [Nt-proANP] was correlated with left atrial size (r = 0.35; p=0.03). A linear regression model was developed to further explore these relationships. LAs2D and LVPWd had an interactive effect on plasma [Nt-proANP] (R2 = 0.2737; p= 0.02). There was no correlation between any other echocardiographic variable and plasma [Nt-proANP]. There was no correlation between plasma [Nt-proANP] and heart rate (HR), body-weight, or age. Conclusions: Cats with HCM do not have significantly higher plasma [Nt-proANP] than normal cats. There was a significant linear relationship between [Nt-proANP] and LAs2D, LVPWd and the model that described their interaction. / Master of Science
17

Investigating the Structural Pathogenesis of Δ 160E Mutation – Linked Hypertrophic Cardiomyopathy

Abdullah, Salwa January 2016 (has links)
Hypertrophic cardiomyopathy (HCM) is a primary disease of the myocardium. 4-11% of HCM is caused by mutations in cardiac troponin T (cTnT) and 65% of them are within the tropomyosin (TM)-binding TNT1 domain. Two of the known mutational hotspots within TNT1 are in the N and C-terminal domains. Unlike the N-terminal domain; no high-resolution structure exists for the highly conserved C-terminal domain limiting both our ability to understand the functional role of this extended domain in myofilament activation and molecular mechanism(s) of HCM. The Δ160E mutation is an in-frame deletion of a glutamic acid residue at position 160 of cTnT. This TNT1 C-terminal mutation is associated with an especially poor prognosis. The Δ160E mutation is located in a putative "hinge region" immediately adjacent to the unstructured flexible linker connecting the TM-binding TNT1 domain to the Ca²⁺-sensitive TNT2 domain. Unwinding of this α-helical hinge may provide the flexibility necessary for thin filament function. Previous regulated in vitro motility assay (R-IVM) data showed mutation-induced impairment of weak actomyosin binding. Thus, we hypothesized that the Δ160E mutation repositions the flexible linker which impairs weak electrostatic binding and ultimately leads to severe cardiac remodeling. The goal of our studies is two-fold: 1) to gain high-resolution insight into the position of the cTnT linker with respect to the C-terminus of TM, and 2) to identify Δ160E-induced positional changes using Fluorescence Resonance Energy Transfer (FRET) in a fully reconstituted thin filament. To this end, residues in the middle and distal regions of the cTnT linker were sequentially cysteine-substituted (A168C, A177C, A192C and S198C) and labeled with the energy donor IAEDANS. The energy acceptor, DABMI was attached to cysteine 190 (C190) in the C-terminal region of TM and FRET measurements were obtained in the presence and absence of Ca²⁺ and myosin subfragment 1 (S1). An all-atom thin filament model in the Ca²⁺–on state was employed to predict the pathogenic effects of the Δ160E mutation on the structure and the dynamics of the cTnT linker region. Our data suggest that the linker domain runs alongside the C-terminus of TM and is differentially repositioned by calcium, myosin and the Δ160E mutation. The Δ160E mutation moves the linker closer to the C-terminus of TM. The in silico model supported this finding and demonstrated a mutation-induced decrease in linker flexibility. Moreover, the model predicted a pathogenic change in the orientation of the middle region of the linker and in the position of the Ca²⁺-sensitive TNT2 domain and the TM-binding TNT1 domain in response to Δ160E mutation. Collectively, our findings suggest that the Δ160E mutation-induced changes in the structure, position and dynamics of the linker region cause steric blocking of weak myosin binding sites on actin and subsequent impairment of contraction and disruption of sarcomeric integrity. These studies, for the first time, provided information regarding the role of the extended linker in both myofilament activation and disease.
18

The role of novel protein-protein interactions in the function and mechanism of the sarcomeric protein, myosin binding protein H (MyBPH)

Mouton, Jacoba Martina 04 1900 (has links)
Thesis (PhD)--Stellenbosch University, 2014. / ENGLISH ABSTRACT: Left ventricular hypertrophy (LVH) is a major risk factor for cardiovascular morbidity and mortality, and is a feature of common diseases, such as hypertension and diabetes. It is therefore vital to understand the underlying mechanisms influencing its development. However, investigating the mechanisms underlying LVH in such complex disorders can be challenging. For this reason, many researchers have focused their attention on the autosomal dominant cardiac muscle disorder, hypertrophic cardiomyopathy (HCM), since it is considered a model disease in which to study the causal molecular factors underlying isolated cardiac hypertrophy. HCM is a heterogeneous disease that manifests with various phenotypes and clinical symptoms, even in families with the same genetic defects, suggesting that additional factors contribute to the disease phenotype. Despite the identification of several HCM-causing genes, the genetic factors that modify the extent of hypertrophy in HCM patients remain relatively unknown. The gene encoding the sarcomeric protein, cardiac myosin binding protein C, cMyBPC (MyBPC3) is one of the most frequently implicated genes in HCM. Identification of proteins that interact with cMyBPC has led to improved insights into the function of this protein and its role in cardiac hypertrophy. However, very little is known about another member of the myosin binding protein family, myosin binding protein H (MyBPH). Given the sequence homology and similarity in structure between cMyBPC and MyBPH, we propose that MyBPH, like cMyBPC, may play a critical role in the structure and functionality of the cardiac sarcomere and could therefore be involved in HCM pathogenesis. The present study aimed to identify MyBPH-interacting proteins by using yeast two-hybrid (Y2H) analysis and to verify these interactions using three-dimensional (3D) co-localisation and co-immunoprecipitation (Co-IP) analyses. We further hypothesized that both MyBPH and cMyBPC may be involved in autophagy. To test this hypothesis, both MyBPH and cMyBPC were analysed for co-localisation with a marker for autophagy, LC3b-II. The role of MyBPH and cMyBPC in cardiac cell contractility were analysed by measuring the planar cell surface area of differentiated H9c2 rat cardiomyocytes in response to β-adrenergic stress after individual and concurrent siRNA-mediated knockdown of MyBPH and cMyBPC. In the present study we employed a family-based genetic association analysis approach to investigate the contribution of genes encoding the novel MyBPH-interacting proteins in modifying the hypertrophy phenotype. This study investigated the hypertrophy modifying effects of 38 SNPs and haplotypes in four candidate HCM modifier genes, in 388 individuals from 27 HCM families, in which three unique South African HCM-causing founder mutations segregate. Yeast two-hybrid analysis identified three putative MyBPH-interacting proteins namely, cardiac β-myosin heavy chain (MYH7), cardiac α-actin (ACTC1) and the SUMO-conjugating enzyme UBC9 (UBC9). These interactions were verified using both 3D co-localisation and Co-IP analyses. Furthermore, MyBPH and cMyBPC were implicated in autophagy, since both these proteins were being recruited to the membrane of autophagosomes. In addition, a cardiac contractility assay demonstrated that the concurrent siRNA-mediated knockdown of MyBPH and cMyBPC resulted in a significant reduction in cardiomyocyte contractility, compared to individual protein and control knockdowns under conditions of β-adrenergic stress. These results indicated that MyBPH could compensate for cMyBPC, and vice versa, further confirming that both these proteins are required for efficient sarcomere contraction. Results from genetic association analyses found a number of SNPs and haplotypes that had a significant effect on HCM hypertrophy. Single SNP and haplotype analyses identified SNPs and haplotypes within genes encoding MyBPH, MYH7, ACTC1 and UBC9, which contribute to the extent of hypertrophy in HCM. In addition, we found that several variants and haplotypes had markedly different statistical significant effects in the presence of each of the three HCM founder mutations. The results of this study ascribe novel functions to MyBPH. Cardiac MyBPC and MyBPH play a critical role in sarcomere contraction and have been implicated in autophagy. This has further implications for understanding the patho-etiology of HCM-causing mutations in the gene encoding MyBPH and its interacting proteins. This is to our knowledge the first genetic association analysis to investigate the modifying effect of interactors of MyBPH, as indication of the risk for developing LVH in the context of HCM. Our findings suggest that the hypertrophic phenotype of HCM is modulated by the compound effect of a number of variants and haplotypes in MyBPH, and genes encoding protein interactors of MyBPH. These results provide a basis for future studies to investigate the risk profile of hypertrophy development in the context of HCM, which could consequently lead to improved risk stratification and patient management. / AFRIKAANSE OPSOMMING: Linker ventrikulêre hipertrofie (LVH) is 'n primêre risikofaktor vir kardiovaskulêre morbiditeit en mortaliteit asook 'n kenmerk van algemene siektes soos hipertensie en diabetes. Daarom is dit van kardinale belang om te verstaan wat die onderliggende meganismes is wat die ontwikkeling van LVH beïnvloed. Die ondersoek na die onderliggende meganismes wat lei tot LVH in sulke komplekse siektes is ‟n uitdaging. Om hierdie rede fokus baie navorsers hul aandag op die autosomaal dominante hartspier siekte, hipertrofiese kardiomiopatie (HKM), wat beskou word as 'n model siekte om die molekulêre oorsake onderliggend tot geïsoleerde kardiovaskulêre hipertrofie te ondersoek. HKM is 'n heterogene siekte wat manifesteer met verskeie fenotipes en kliniese simptome, selfs in families met dieselfde genetiese defekte, wat impliseer dat addisionele faktore bydra tot die modifisering van die siekte fenotipe. Ten spyte van die identifisering van verskeie HKM-versoorsakende gene, bly die genetiese faktore wat die mate van hipertrofie in HKM pasiente modifiseer relatief onbekend. Die geen wat kodeer vir die sarkomeriese proteïen, kardiale miosien-bindingsproteïen C (kMyBPC) is die algemeenste betrokke in HKM. Die identifisering van proteïene wat bind met kMyBPC het gelei tot verbeterde insigte tot die funksie van hierdie proteïen en die rol wat hierdie proteïen in hipertrofie speel. Ten spyte hiervan, is daar baie min inligting beskikbaar oor 'n ander lid van die miosien-bindingsproteïen families, miosien-bindingsproteïen H (MyBPH). Gegewe die ooreenstemming tussen die DNA basispaar-volgorde en struktuur tussen hierdie twee proteïene, stel ons voor dat MyBPH, net soos kMyBPC, 'n kritiese rol in die struktuur en funksie van die kardiale sarkomeer speel en kan daarom betrokke wees in die patogenese van HKM. Die huidige studie het beoog om proteïene wat met MyBPH bind te identifiseer deur die gebruik van gis-twee-hibried (G2H) kardiale biblioteek sifting en om hierdie interaksies te verifieer met behulp van drie-dimensionele (3D) ko-lokalisering en ko-immunopresipitasie eksperimente. Ons het verder gehipotiseer dat beide MyBPH and kMyBPC betrokke kan wees in outofagie. Om hierdie hipotese te toets is beide MyBPH en kMyBPC geanaliseer vir ko-lokalisering met 'n merker vir outofagie, LC3b-II. Verder het ons beplan om die rol van MyBPH en kMyBPC in kardiale spiersel-sametrekking te ondersoek deur die oppervlak van gedifferensieerde H9c2 rot kardiomiosiete in reaksie op β-adrenergiese stres te meet, na individuele en gesamentlike siRNA-bemiddelde uitklopping van MyBPH en kMyBPC. In hierdie studie het ons 'n familie-gebaseerde genetiese assosiasie analise benadering gevolg om vas te stel of MyBPH en gene wat kodeer vir die geverifieerde bindingsgenote van MyBPH bydra tot die modifisering van die hipertrofiese fenotipe. Die doel van hierdie studie was om die hipertrofiese effek van 38 enkel nukleotied polimorfismes (SNPs) en haplotipes in vier kandidaat HKM modifiserende gene in 388 individue van 27 HCM families te toets, waarin drie unieke Suid-Afrikaanse HKM-stigters mutasies segregeer. G2H analise het drie verneemde MyBPH bindingsgenote geidentifiseer, naamlik miosien (MYH7), alfa kardiale aktien (ACTC1) en die SUMO-konjugerende ensiem UBC9 (UBC9). Hierdie interaksies is geverifieer deur middel van 3D ko-lokalisering en ko-immunopresipitasie analises. Verder is bewys dat MyBPH en kMyBPC betrokke is in outofagie, siende dat beide proteïene gewerf is tot die membraan van die outofagosoom. 'n Kardiale sametrekkings eksperiment het gevind dat die gesamentlike siRNA-bemiddelde uitklopping van MyBPH en kMyBPC 'n merkwaardige vermindering in die kardiomiosiet sametrekking veroorsaak het in reaksie op β-adrenergiese stres kondisies, in vergelyking met die individuele proteïen en kontrole uitkloppings eksperimente. Hierdie resultate bevestig dat MyBPH vir kMyBPC kan instaan en ook andersom, wat verder bevestig dat beide proteïene benodig word vir effektiewe sarkomeer sametrekking. Resultate van die genetiese assosiasie studie het gevind dat 'n aantal SNPs en haplotipes 'n beduidende effek of HKM hipertrofie het. Enkel SNP en haplotipe analises in gene wat kodeer vir MyBPH, MYH7, ACTC1 en UBC9 het SNPs en haplotipes geidentifiseer wat bydra tot die omvang van hipertrofie in HKM. Verder het ons gevind dat sekere SNPs en haplotipes kenmerkend verskillende statisties beduidende effekte in die teenwoordigheid van elk van die drie HKM-stigter mutasies gehad het. Die resultate van hierdie studie skryf twee nuwe funksies aan MyBPH toe. Kardiale MyBPC en MyBPH speel 'n kritiese rol in sarkomeer sametrekking en is betrokke in outofagie. Hierdie resultate het verdere implikasies vir die verstaan van die pato-etiologie van die HKM-veroorsakende mutasies in die MyBPH, MYH7, ACTC1 en UBC9 gene. So vêr dit ons kennis strek is dit die eerste genetiese assosiasie studie wat die modifiserende effek van bindingsgenote van MyBPH ondersoek as risiko aanduiding vir die ontwikkeling van LVH in die konteks van HKM. Ons bevindinge bewys dat die hipertrofiese fenotipe van HKM gemoduleer word deur die komplekse effekte van SNPs en haplotipes in die MyBPH geen en gene wat MyBPH proteïen-bindingsgenote enkodeer. Hierdie resultate verskaf dus 'n basis vir toekomstige studies om die risiko profiel van hipertrofie ontwikkeling met betrekking tot HKM te ondersoek, wat gevolglik kan bydra tot die verbeterde risiko stratifikasie en pasiënte bestuur.
19

L’inhibition de PDZRN3 est requise pour la maturation cardiomyocytaire post-natal et protège de l’insuffisance cardiaque / Repression de Pdzrn3 is required for heart maturation and protects against heart failure

Pernot, Mathieu 11 December 2017 (has links)
Durant le développement myocardique, les cardiomyocytes s'allongent et se connectent entre eux grâce à une structure spécialisée, le disque intercalaire. Cette organisation des cardiomyocytes est essentielle pour le couplage mécanique et la conduction électrique. Un des éléments responsables de l'insuffisance cardiaque est la perturbation de ces sites de contact intercellulaire. Actuellement, aucun facteur n'est connu pour coordonner l'organisation polarisée des cardiomyocytes. Ici, nous présentons une augmentation importante de Pdzrn3 dans des cardiomyopathies hypertrophiques humaines et dans des myocardes murins, corrélée à une perte de l'élongation polarisée des cardiomyocytes. De plus la délétion spécifique intramyocardique de l'expression de Pdzrn3, dans un modèle murin, protège de la survenue d'une insuffisance cardiaque secondaire à une cardiomyopathie hypertrophique. Nos résultats révèlent une nouvelle voie de signalisation qui contrôle un programme génétique essentiel pour le développement myocardique, le maintien de la géométrie et de la fonction contractile des cardiomyocytes. Cette voie de signalisation implique PDZRN3 et cette molécule constitue une cible thérapeutique potentielle pour la protection de l’insuffisance cardiaque chez l’homme. / During heart maturation, individual cardiomyocytes stretch out and connect some with the others via their extremities by intercalated disk protein complexes. This planar and directionnel organization of the myocyte sis crucial for the machanical coupling and the anisotropic conduction of the electric signal in the heart. One of the hallmarks of heart failure concerns alterations in the contact sites between cardiomyocytes. Yet no factors on its own is known to coordinate cardiomyocyte polarized organization. Here we reported enhanced levels of Pdzrn3 in the diseased hypertrophic human and mouse myocardium, correlated with the loss of cardiomyocyte polarized elongation. Furthermore, mouse cardiac Pdzrn3 deficiency protected against heart failure in a mouse model of hypertrophic cardiomyopathy. Our results reveal a novel signaling that controls a genetic program essential for heart maturation and for maintain of cardiomyocyte overall geometry and contractile function and implicates PDZRN3 as a potential therapeutic target for human heart failure protection.
20

Avaliação genética de gatos da raça Persa: mapeamento da mutação relacionada à cardiomiopatia hipertrófica de origem familial / Genetic evaluation of Persian cats: screening of hypertrophic cardiomyopathy mutation.

Pellegrino, Arine 05 November 2014 (has links)
A cardiomiopatia hipertrófica (CMH) é a principal cardiopatia dos felinos, caracterizada por hipertrofia ventricular esquerda, sem dilatação. A prevalência em humanos é de um a cada 500 indivíduos e, em pelo menos 60% dos casos, a doença é de origem familial. Há mais de 1400 mutações em mais de 11 genes que codificam proteínas do sarcômero relacionadas à CMH. Em algumas famílias de gatos, a CMH é transmitida de forma autossômica dominante sendo muito similar à humana. No Maine Coon, redução na miomesina e mutação no gene que codifica a proteína C miosina ligante (MYBPC3) são alterações encontradas nos acometidos pela CMH. No Ragdoll, a CMH está relacionada com mutação no mesmo gene, porém em um códon diferente e altamente conservado na espécie. Em outras raças como Persa, British Shorthair, Norwegian Forest também há evidências da CMH familial, porém não há comprovação do tipo de herança envolvida. No presente estudo, uma população de 100 gatos da raça Persa foi avaliada por meio de exames ecocardiográfico, eletrocardiográfico, laboratoriais, mesuração da pressão arterial e pesquisa da mutação relacionada à doença renal policística (PKD), prevalente em gatis de Persas. Os animais foram classificados quanto à presença ou não da CMH e, após seleção dos grupos experimentais (20 gatos sem CMH e 22 gatos com CMH), amostras de sangue foram submetidas à extração do DNA, genotipagem pela técnica de PCR e sequenciamento dos genes da alfa-actina cardíaca (exon 5 do gene ACTC1) e da proteína C miosina ligante (exon 27 do gene MYBPC3), com posterior correlação das mutações com a presença da afecção. À avaliação da população total, a CMH foi mais prevalente em gatos machos e de maior faixa etária; ocorreu em 22 animais; e a forma assimétrica com hipertrofia miocárdica em região septal basal foi a mais comum na raça. A presença de mutação relacionda à PKD foi mais comum nos gatos com hipertrofia ventricular, apesar dos mesmos apresentarem pressão arterial e função renal normais. Foi identificado um polimorfismo de nucleotídeo único (SNP) na posição 890 do exon 5 do gene ACTC1 e três SNP no intron 5-6 do mesmo gene. Nenhum polimorfismo, adição ou deleção foi observado em outras regiões do gene ACTC1 ou no gene MYBPC3. Apesar dos SNP observados no estudo, os mesmos não se enquadram nos critérios de mutação causal da CMH porque não provocam mudança em aminoácidos e não ocorreram exclusivamente em animais com CMH. Desta forma, a mutação causal da CMH em gatos da raça Persa não foi elucidada e mutações nestes dois exons de genes cardíacos não parecem ser a causa da cardiomiopatia na referida raça. Avaliações de genes cardíacos adicionais são necessárias para a identificação da causa molecular desta cardiopatia no Persa. Em relação aos resultados encontrados nos gatos PKD positivos, há necessidade de mais estudos para avaliar a relação causal (PKD e hipertrofia) ou associação genética entre ambas. Faz-se necessária a avaliação cardiológica de gatos PKD positivos, bem como é necessário incluir a PDK como diagnóstico diferencial da CMH no Persa. / Hypertrophic cardiomyopathy (HCM) is the most important feline heart disease and it is characterized by ventricular hypertrophy in absence of dilated left ventricle. In humans, the prevalence is 1 to 500 individuals and the familial HCM occurs in at least 60% of cases. There are more than 1400 mutations in more than 11 sarcomeres genes related to HCM. In some families of cats, HCM is an autosomal dominant genetic disease very similar to the human HCM. Reduction in miomesine and a mutation in myosin binding protein C gene (MYBPC3) are observed in Maine Coon cats with HCM. In Ragdoll cats, HCM is associated with a mutation in the same gene, but in a different codon highly conserved in feline species. In other breeds such as Persian, British Shorthair and Norwegian Forest there is also evidence of familial HCM, but the type of genetic inheritance is unknown. In this study, a population of 100 Persian cats was assessed by: echocardiography, electrocardiography, laboratorial tests, blood pressure determination and genetic test for the presence of the polycystic kidney disease (PKD) mutation, common in Persians. The animals were classified according to the presence or not of HCM. Blood samples from experimental groups (20 cats without HCM and 22 cats with HCM) were subjected to DNA extraction, genotyping by PCR and sequencing of cardiac alpha-actin gene (exon 5 of ACTC1) and myosin binding protein C gene (exon 27 of MYBPC3) with subsequent correlation with the presence of mutations and HCM. In the evaluated population, HCM was more prevalent in older and male cats; it occurred in 22 animals; and the asymmetric hypertrophy at basal region of septum was the most common. The PKD mutation was more common in cats with left ventricular hypertrophy, despite they presenting normal blood pressure and renal function. One single nucleotide polymorphism (SNP) at position 890 of exon 5 of the gene ACTC1 and three SNP in intron 5-6 of the same gene were identified. No polymorphism, addition or deletion was observed in other regions of the gene ACTC1 or MYBPC3 gene. Despite the SNP observed in the study, they do not fit the criteria of HCM causal mutation because they do not cause changes in amino acids and do not occurred exclusively in animals with HCM. Thus, a causal mutation of HCM in Persians cat has not been elucidated and mutations in these two exons of cardiac genes do not seem to be the cause of HCM in this breed. Additional screening of cardiac genes is necessary to identify the molecular cause of this feline disease in Persian cats. Regarding the results founded in PKD positive cats, it is important for further studies to evaluate the genetic association or causal relationship (PKD and hypertrophy). The cardiologic evaluation of PKD positive cats is necessary, and the PDK must be included as a differential diagnosis of HCM in Persian.

Page generated in 0.1065 seconds