Spelling suggestions: "subject:"impotent""
21 |
Products of diagonalizable matricesKhoury, Maroun Clive 09 1900 (has links)
Chapter 1 reviews better-known factorization theorems of a square
matrix. For example, a square matrix over a field can be expressed
as a product of two symmetric matrices; thus square matrices over
real numbers can be factorized into two diagonalizable matrices.
Factorizing matrices over complex numbers into Hermitian matrices
is discussed. The chapter concludes with theorems that enable one to
prescribe the eigenvalues of the factors of a square matrix, with
some degree of freedom. Chapter 2 proves that a square matrix over
arbitrary fields (with one exception) can be expressed as a product
of two diagonalizable matrices. The next two chapters consider
decomposition of singular matrices into Idempotent matrices, and of
nonsingular matrices into Involutions. Chapter 5 studies
factorization of a complex matrix into Positive-(semi)definite
matrices, emphasizing the least number of such factors required. / Mathematical Sciences / M. Sc. (Mathematics)
|
22 |
Význačné prvky grupových okruhů / Distinguished elements of group ringsProcházková, Zuzana January 2021 (has links)
Title: Distinguished elements of group rings Author: Bc. Zuzana Procházková Department: Department of Algebra Supervisor: doc. Mgr. et Mgr. Jan Žemlička, Ph.D., Department of Algebra Abstract: This thesis is about finding idempotents in a group ring. We describe three techniques of finding idempotents in a semisimple group ring and in the last chapter there is an attempt to find idempotents in a group ring that does not have to be semisimple. The first technique uses representations and characters of a group. The second technique finds idempotents through the use of Shoda pairs. The third technique lifts idempotent from the factor ring with the help of CNC system of ideals, which is a generalization of a well-known technique with nilpotent ideals, and it is here extended to group rings formed by non-abelian group and noncommutative ring. iii
|
Page generated in 0.0412 seconds