• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 8
  • 3
  • 1
  • Tagged with
  • 12
  • 6
  • 5
  • 5
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Regulation of mitochondrial ATPase by its inhibitor protein IF1 in Saccharomyces cerevisiae

Wu, Qian 12 December 2013 (has links) (PDF)
ATP synthase is an essential protein complex located in the mitochondrial inner membrane, which synthesize ATP by coupling to a rotary proton transport across the membrane at the expense of the electrochemical proton gradient created by the electron transport chain. This reaction guarantees the supply of energy to biological processes in a cell. When mitochondria get deenergized, i.e. the protomotive force across the mitochondrial inner membrane collapses, the ATP synthase switches from ATP synthesis to hydrolysis. This hydrolytic activity is then immediately prevented by a natural soluble mitochondrial ATPase inhibitor, IF1. This efficient reversible inhibition system protects cells from wasting energy. In yeast, IF1 is a small protein consisting of 63 amino acids. It binds to one of the three (αβ) catalytic interfaces of ATP synthase and thereby blocks the rotary catalysis. Although the crystal structure of the dead-end IF1 inhibited F1-ATPase complex has been resolved, IF1 initial binding and locking to ATPase still remain unclear events at the molecular level.During my thesis, we have been interested in the dynamic mechanism of ATPase inhibition by IF1. By means of analyses of published structures and protein sequence alignment, we selected numerous residues located in different regions of Saccharomyces cerevisiae ATP synthase α, β subunits, which might potentially paticipate in IF1 binding process. Using site-directed mutagenesis combined with kinetic experiments, we studied the effect of mutations of the selected candidates on the rate and extent of ATPase inhibition by IF1. In this way we identified residues or motifs in ATP synthase α, β subunits involved in IF1 recognition and/or locking steps, which allows complementing structural studies and drawing an outline of IF1 binding.
12

La reprogrammation métabolique comme facteur de survie induit par les hydrocarbures aromatiques polycycliques, cancérogènes de l'environnement. / metabolic reprogramming as a survival factor induced by polycyclic aromatic hydrocarbons, environmental carcinogens

Hardonnière, Kévin 09 November 2015 (has links)
Différentes études ont montré que les facteurs liés au mode de vie, de même que le vieillissement ou l’amélioration des tests de diagnostic et de screening, ne peuvent à eux seuls expliquer l’incidence croissante des cancers dans les pays dits industrialisés. Bien que des changements de comportements aient conduit à une diminution du nombre de cancers en France, l’incidence des carcinomes hépatocellulaires est toujours en augmentation. D’autres facteurs oncogéniques, tels que l’exposition à des cancérogènes de l’environnement pourraient intervenir. Parmi ceux-ci, les hydrocarbures aromatiques polycycliques (HAP), dont le benzo[a]pyrène (B[a]P) est le chef de file, et qui sont retrouvés notamment dans la fumée de cigarette, les gaz d’échappements ou les aliments grillés, constituent une priorité en termes de santé publique du fait de leurs effets cancérogènes. Une caractéristique-clé commune à tous les cancers a trait à leur métabolisme énergétique particulier, basé sur la glycolyse. Cependant, rien n’est connu quant à une possible reprogrammation métabolique due aux HAP. L’objectif global de mon projet de thèse a donc été d’étudier l’impact in vitro du B[a]P, utilisé à faible concentration, sur le métabolisme énergétique, de préciser le rôle de la reprogrammation métabolique dans le contrôle de la balance survie/apoptose par le B[a]P et de caractériser les mécanismes cellulaires et moléculaires impliqués. Nous avons d’abord identifié une production de monoxyde d’azote (NO) résultant de l’activation de la iNOS par le B[a]P, et agissant comme un signal de survie, possiblement via une hyperpolarisation mitochondriale. Nous avons ensuite démontré que le B[a]P induit une reprogrammation métabolique des cellules en favorisant un métabolisme glycolytique au détriment de la phosphorylation oxydative. Enfin, nous avons identifié IF1, l’inhibiteur physiologique de la F0F1ATPase, comme une nouvelle cible des HAP, participant à la reprogrammation métabolique et capable de promouvoir la survie sous l’effet du B[a]P. Au total, nous montrons que ces altérations du métabolisme mitochondrial promues par le B[a]P, sont à l’origine de signaux de survie dans notre modèle de cellules épithéliales hépatiques F258. Ces mécanismes pourraient ainsi contribuer à la progression tumorale sous l’effet des HAP. / Various studies have shown that factors related to lifestyle (smoking, diet, etc.), as well as aging or even the improved efficiency of diagnostic and screening tests, cannot explain by themselves the rising incidence of cancers in the industrialized countries. Although evolution of behaviors has helped reducing the number of cancers in France, the incidence of hepatocellular carcinomas is still increasing. This alarming result could be related to other oncogenic factors such as chronic exposure to environmental carcinogens. Among these compounds, polycyclic aromatic hydrocarbons (PAHs), including benzo[a]pyrene (B[a]P), the prototype carcinogen of this family, especially found in cigarette smoke, exhaust fumes or grilled food, are a priority in terms of public health due to their high carcinogenic potential. A key feature of cancer cells is related to their predominant glycolytic metabolism. However, nothing is known yet about a possible metabolic reprogramming upon PAH exposure. My PhD project has aimed at characterizing the impact of a low B[a]P concentration on energy metabolism, at clarifying the role of such a metabolic reprogramming in cell fate determination, and at elucidating the cellular and molecular basis of this phenomenon. We first identify a production of nitric oxide (NO), involving the activation of iNOS by B[a]P, and acting as a survival signal. We then demonstrate that B[a]P induces a metabolic reprogramming, thus promoting a glycolytic metabolism at the expense of oxidative phosphorylation. Finally, we identify IF1, the physiological inhibitor of the F0F1ATPase as a new target of PAHs, which participates in the B[a]P-elicited metabolic reprogramming and survival. To sum up, we identify new alterations of mitochondrial metabolism, acting as survival signals in B[a]P-treated rat hepatic epithelial F258 cells. These mechanism could therefore contribute to tumor progression.

Page generated in 0.0323 seconds