• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 3
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Communication cellule-cellule : transfert de mitochondries provenant des cellules souches/stromales mesenchymateuses (CSM) vers des cellules cancereuses / Cell to cell communication : transfer of mitochondria from mesenchymal stem/stromal cells (MSC) to cancer cells

Caicedo, Andrès 20 December 2013 (has links)
Au début de ma thèse, je me suis intéressé aux processus qui sous-tendent la communication cellulaire et plus spécifiquement les interactions cellule-cellule. Pourquoi une cellule établit-elle un contact spécifique avec une autre cellule ? Comment les cellules répondent-elles à cette interaction et quels en sont les effets ? J'ai utilisé comme modèle d'étude l'interaction entre les cellules souches/stromales mésenchymateuses (CSM) et des lignées de cancer du sein. L'objectif de mon travail a été d'analyser les mécanismes de ces interactions entre CSM et cellules cancéreuses et d'en évaluer les effets sur les fonctions des cellules cancéreuses. En effet, des mécanismes de recrutement des CSM aux sites tumoraux ont été décrits avec des effets sur la progression tumorale, ce qui ouvre par ailleurs des perspectives pour de nouvelles approches thérapeutiques. J'ai tout d'abord développé un système expérimental de microscopie confocale en temps réel pour observer le type d'interaction qui est produit entre les CSM humaines et les cellules de carcinomes mammaires MDA-MB-231 et MCF7. J'ai constaté la formation dynamique de structures tubulaires entre les deux types cellulaires et, de façon surprenante, le passage des mitochondries des CSM vers les cellules cancéreuses. En un deuxième temps, j'ai utilisé un système d'invasion dans une matrice 3D de collagène, que nous avons adapté à la coculture, afin d'observer les effets de l'interaction des MDA-MB-231 avec les CSM. En accord avec la littérature, nous avons constaté une augmentation du pouvoir invasif des cellules cancéreuses, effet qui pouvait être lié au transfert des mitochondries provenant des CSM. Pour répondre à cette question, j'ai mis au point un protocole pour transférer spécifiquement des mitochondries, isolées à partir de cellules, vers d'autres cellules. Ce protocole, exploité dans ce manuscrit pour le transfert de mitochondries de CSM vers les cellules cancéreuses MDA-MB-231, peut être transposé à d'autres types cellulaires et fait l'objet d'une demande de brevet. Nos données indiquent que l'acquisition de mitochondries de CSM par les cellules cancéreuses modifie leurs propriétés fonctionnelles et augmente leur capacité de prolifération et d'invasion. Concernant leur activité métabolique, on observe une augmentation de leur respiration mitochondriale et de leur production d'ATP. Nos données préliminaires suggèrent aussi une augmentation de l'expression transcriptionnelle d'enzymes impliquées dans la synthèse des lipides et l'oxydation des acides gras. Ces données, générées grâce au protocole de transfert artificiel de mitochondries mis au point, montrent pour la première fois que les mitochondries des CSM peuvent majorer certaines propriétés cellulaires liées à la progression tumorale, comme la prolifération et l'invasion, et contribuer à une reprogrammation métabolique des cellules cancéreuses. Elles s'intègrent au rôle proposé par la communauté scientifique pour les CSM dans le microenvironnement tumoral. La technique de transfert artificiel de mitochondries nous permettra de répondre à d'autres questions restées ouvertes, comme le rôle possible des mitochondries des CSM dans les résistances développées par les tumeurs vis-à-vis des agents anti-cancéreux. Le protocole de transfert de mitochondries développé au laboratoire constitue une technique de choix et offre de nombreux avantages comparativement à d'autres techniques comme la micro-injection et la génération des hybrides cytoplasmiques. Sa mise en œuvre est en effet simple et reproductible et permet de traiter une grande quantité de cellules. Cette méthode permet d'envisager de nombreuses perspectives et applications dans le domaine de la reprogrammation métabolique, comme par exemple de restaurer les capacités d'une cellule dysfonctionnelle par le transfert de mitochondries issues d'une cellule saine et « métaboliquement active ». / At the beginning of my thesis, I was interested in the process involved in cell communication, more specifically in cell-to-cell interactions. Why does a cell specifically establish contacts with another one, how do cells respond to these interactions and what are the effects? As a model to answer these questions, I studied the interactions between MSCs and two breast cancer cell lines. The study of the communications between MSCs and tumor cells is an alternative to explore and understand tumor progression. MSC recruitment to the tumor is shown to favor the progression of the disease. The mechanisms of this dialogue are multiple and are the object of a great number of studies that aim at finding new therapeutic approaches. The objective of this work was to analyze the interactions between MSCs and cancer cells and evaluate the potential effects of this communication in tumor progression. First, I developed an experimental system of real time confocal microscopy in order to observe the interaction produced between MSCs and the breast carcinoma MDA-MB-231 and MCF-7 cells. I noticed the dynamic formation of tubular structures between the two different cell types and, surprisingly, the passage of mitochondria from MSCs to the cancer cells. Second, we used a 3D system of cell invasion in a collagen matrix, which we adapted for the coculture, in order to observe the effects of the interactions between the MDA-MB-231 and MSCs. In agreement with the literature, we observed an increase in the migratory potential of the cancer cells, an effect that could be linked to the transfer of mitochondria from MSCs to the cancer cells. To answer this question, I set up a protocol to specifically transfer to the cancer cells mitochondria isolated from the MSCs and test directly the functional consequences for the cancer cells. This protocol can be used to transfer mitochondria, not only from MSCs but also from other cells. This method is currently submitted to a patent process. Our results show that the transfer of MSC mitochondria to the cancer cells modifies cancer cells functional properties and increase their invasive and proliferative capacities. Concerning the metabolic activity, we noticed an increase in mitochondrial respiration and ATP production. We also observed an increase in the transcription level of enzymes related to the lipid synthesis and fatty acid oxidation. The results generated with this new protocol of mitochondria transfer show, for the first time, that mitochondria originating from MSCs can improve cellular capacities linked to the tumor progression. The role proposed by the scientific community for the interactions of MSCs with the tumor cells fits with the data generated in our work. Several questions remain open. In particular, could the transfer of mitochondria from MSCs to the cancer cells contribute to the acquisition of resistance to anti-cancer agents observed in patients? The protocol of transfer of mitochondria that we developed in the laboratory is a technique of choice and offers many advantages over other techniques such as microinjection and cytoplasmic hybrids; its implementation is simple and reproducible and can target large numbers of cells. This method opens numerous perspectives and potential applications such as the study of metabolic reprogramming. Thus, we could consider restoring the activity of dysfunctional cells by transferring mitochondria from “metabolically active” or healthy cells. In the long term, one of the applications could be transferring healthy or genetically modified mitochondria to zygotes carrying mitochondrial DNA mutations, in order to treat pathologies like infertility, neuro-degenerative diseases, cancer and premature aging.
2

Etude de la reprogrammation métabolique de l' adénocarcinome canalaire pancréatique / Study of pancreatic ductal adenocarcinoma metabolic rewiring

Olivares, Orianne 08 January 2015 (has links)
L'adénocarcinome canalaire pancréatique (ADKp) possède une architecture compacte, où les cellules tumorales forment des glandes emprisonnées dans un bouclier fibrotique, composé à 50% de collagènes. Ce bouclier empêche la vascularisation, limite l'apport en nutriments et oxygène. Beaucoup de cellules meurent, mais certaines survivent, en reprogrammant en particulier leur métabolisme. Ula plus étudiée est l'utilisation constitutive de la glycolyse, indépendamment de la présence d'oxygène (Effet Warburg). Nous montrons que la population hypoxique de l'ADKp dépend aussi de la dégradation de la glutamine, et que l'activité concomitante de la glycolyse et de la glutaminolyse entraîne la réactivation de la biosynthèse des hexosamines. Ces composés participent à la prolifération tumorale en stabilisant les transporteurs au glucose, ou des oncogènes. L'activité glycolytique intense des cellules hypoxiques permet la synthèse de lactate qui sert de ressource nutritive aux cellules oxygénées adjacentes aux cellules hypoxiques. Nous montrons que certaines cellules oxygénées sont capables de survivre au stress nutritif en dégradant le collagène (écophagie), en utilisant la proline qu'il contient. Les cellules tumorales captent et dégradent les fragments de collagènes pour survivre. Des traçages isotopiques de collagène marqué permettent d'appuyer que la proline internalisée provient du collagène matriciel. Cette proline est transformée en glutamate et fournit le cycle de Krebs pour favoriser la survie tumorale. Ces travaux montrent l'importance de l'étude de la reprogrammation métabolique dans l'ADKp, et le rôle de l'hypoxie ou du collagène dans la progression tumorale. / Pancreatic ductal adenocarcinoma (PDAC) has a compact architecture wherein the tumor cells are organized in glands and trapped in a fibrotic shield (stroma) made of up to 50% of collagen. This shield prevents blood supply, limits nutrients and oxygen intake. Many cells die, but some survive, and proliferate particularly by reprogramming their metabolism. The most studied metabolic reprogramming remains tumor cells addiction to glucose and the constitutive use of glycolysis, regardless of the presence of oxygen (Warburg effect). We show that the hypoxic population of PDAC also depends on glutamine degradation, and the concomitant activity of both glycolysis and glutaminolysis reactivates the hexosamine biosynthetic pathway. These compounds contribute to tumor proliferation by stabilizing glucose transporters, or oncogenes. The intense glycolytic activity of hypoxic cells allows the synthesis of lactate. Excreted in the microenvironment, it serves as a nutritive resource to oxygenic cells adjacent to the hypoxic population and enables their proliferation. We show that some oxygenated cells are also able to survive under nutrient stress by degrading collagen (ecophagy) and use proline it contains. Tumor cells intake and degrade collagen fragments to survive. Isotopic tracer experiments using labeled collagen support the idea that proline comes from the extracellular collagen. This proline is degraded and converted into glutamate, fueling the Krebs cycle for anaplerosis and promotes tumor survival. These studies therefore show the importance to study the metabolic reprogramming of PDAC, and the role of hypoxia or collagen matrix in tumor progression.
3

La reprogrammation métabolique comme facteur de survie induit par les hydrocarbures aromatiques polycycliques, cancérogènes de l'environnement. / metabolic reprogramming as a survival factor induced by polycyclic aromatic hydrocarbons, environmental carcinogens

Hardonnière, Kévin 09 November 2015 (has links)
Différentes études ont montré que les facteurs liés au mode de vie, de même que le vieillissement ou l’amélioration des tests de diagnostic et de screening, ne peuvent à eux seuls expliquer l’incidence croissante des cancers dans les pays dits industrialisés. Bien que des changements de comportements aient conduit à une diminution du nombre de cancers en France, l’incidence des carcinomes hépatocellulaires est toujours en augmentation. D’autres facteurs oncogéniques, tels que l’exposition à des cancérogènes de l’environnement pourraient intervenir. Parmi ceux-ci, les hydrocarbures aromatiques polycycliques (HAP), dont le benzo[a]pyrène (B[a]P) est le chef de file, et qui sont retrouvés notamment dans la fumée de cigarette, les gaz d’échappements ou les aliments grillés, constituent une priorité en termes de santé publique du fait de leurs effets cancérogènes. Une caractéristique-clé commune à tous les cancers a trait à leur métabolisme énergétique particulier, basé sur la glycolyse. Cependant, rien n’est connu quant à une possible reprogrammation métabolique due aux HAP. L’objectif global de mon projet de thèse a donc été d’étudier l’impact in vitro du B[a]P, utilisé à faible concentration, sur le métabolisme énergétique, de préciser le rôle de la reprogrammation métabolique dans le contrôle de la balance survie/apoptose par le B[a]P et de caractériser les mécanismes cellulaires et moléculaires impliqués. Nous avons d’abord identifié une production de monoxyde d’azote (NO) résultant de l’activation de la iNOS par le B[a]P, et agissant comme un signal de survie, possiblement via une hyperpolarisation mitochondriale. Nous avons ensuite démontré que le B[a]P induit une reprogrammation métabolique des cellules en favorisant un métabolisme glycolytique au détriment de la phosphorylation oxydative. Enfin, nous avons identifié IF1, l’inhibiteur physiologique de la F0F1ATPase, comme une nouvelle cible des HAP, participant à la reprogrammation métabolique et capable de promouvoir la survie sous l’effet du B[a]P. Au total, nous montrons que ces altérations du métabolisme mitochondrial promues par le B[a]P, sont à l’origine de signaux de survie dans notre modèle de cellules épithéliales hépatiques F258. Ces mécanismes pourraient ainsi contribuer à la progression tumorale sous l’effet des HAP. / Various studies have shown that factors related to lifestyle (smoking, diet, etc.), as well as aging or even the improved efficiency of diagnostic and screening tests, cannot explain by themselves the rising incidence of cancers in the industrialized countries. Although evolution of behaviors has helped reducing the number of cancers in France, the incidence of hepatocellular carcinomas is still increasing. This alarming result could be related to other oncogenic factors such as chronic exposure to environmental carcinogens. Among these compounds, polycyclic aromatic hydrocarbons (PAHs), including benzo[a]pyrene (B[a]P), the prototype carcinogen of this family, especially found in cigarette smoke, exhaust fumes or grilled food, are a priority in terms of public health due to their high carcinogenic potential. A key feature of cancer cells is related to their predominant glycolytic metabolism. However, nothing is known yet about a possible metabolic reprogramming upon PAH exposure. My PhD project has aimed at characterizing the impact of a low B[a]P concentration on energy metabolism, at clarifying the role of such a metabolic reprogramming in cell fate determination, and at elucidating the cellular and molecular basis of this phenomenon. We first identify a production of nitric oxide (NO), involving the activation of iNOS by B[a]P, and acting as a survival signal. We then demonstrate that B[a]P induces a metabolic reprogramming, thus promoting a glycolytic metabolism at the expense of oxidative phosphorylation. Finally, we identify IF1, the physiological inhibitor of the F0F1ATPase as a new target of PAHs, which participates in the B[a]P-elicited metabolic reprogramming and survival. To sum up, we identify new alterations of mitochondrial metabolism, acting as survival signals in B[a]P-treated rat hepatic epithelial F258 cells. These mechanism could therefore contribute to tumor progression.

Page generated in 0.104 seconds