• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 243
  • 42
  • 36
  • 30
  • 12
  • 6
  • 5
  • 4
  • 4
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 602
  • 309
  • 166
  • 135
  • 135
  • 114
  • 98
  • 94
  • 85
  • 70
  • 56
  • 51
  • 50
  • 49
  • 48
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
311

EXPERIMENTS, DATA ANALYSIS, AND MACHINE LEARNING APPLIED TO FIRE SAFETY IN AIRCRAFT APPLICATIONS

Luke N Dillard (11825048) 11 December 2023 (has links)
<div>Hot surface ignition is a safety design concern for serval industries including mining, aviation, automotive, boilers, and maritime applications. Bleed air ducts, exhaust pipes, combustion liners, and machine tools that are operated at elevated temperatures may be a source of ignition that needs to be accounted for during design. An apparatus for the measurements of minimum hot surface ignition temperature (MHSIT) of 3 aviation fluids (Jet-A, Hydraulic Oil (MIL-PRF-5606) and Lubrication Oil (MIL-PRF-23699)) has been developed. This study expands a widely utilized database of values of MHSIT. The study will expand the current range of design parameters including air temperature, crossflow velocity, fluid temperature, global equivalence ratio, injection method, and the effects of pressure. The expanded data are utilized to continue the development of a physics-anchored data dependent system and machine learning model for the estimation of MHSIT.</div><div><br></div><div>The aviation industry, including Rolls Royce, currently use a database of MHSIT values resulting from experiments conducted in 1988 at the Air Force Research Laboratory (AFRL) within the Wright Patterson Air Force Base in Dayton, OH. Over the three decades since these experiments, the range of operating conditions have significantly broadened in most applications including high performance aircraft engines. For example, the cross-stream air velocities (V) have increased by a factor of two (from ~3.4 m/s to ~6.7 m/s). Expanding the known database to document MHSIT for a range of fuel temperatures (TF), air temperatures (TA), pressure (P) and air velocities (V) is of great interest to the aviation industry. MHSIT data for current aviation fluids such as Jet-A and MIL-PRF-23699 (lubrication oil) and their relation to the design parameters have recently been under investigation in a generic experimental apparatus. </div><div><br></div><div>The current work involves utilization of this generic experimental apparatus to further the understanding of MHSIT through the investigation of intermediate air velocities, global equivalence ratios, injection method, and the effects of pressure. This study investigates the effects of air velocity in a greater degree of granularity by utilizing 0.6 m/s increments. This is done to capture the uncertainty seen in MHSIT values above 3.0 m/s. Furthermore, this study also expands the understanding of the effects of injection method on the MHSIT value with the inclusion of spray injected lubrication oil (MIL-PRF-23699) and stream injected Jet-A. The effects of global equivalence ratio are examined for spray injected Jet-A by modulating the aviation fluid injection rate and the crossflow air velocity in tandem. </div><div><br></div><div>During previous experimental campaigns, it was found that MHSIT did not monotonically increase with crossflow air velocity as previously believed. This new finding inspired a set of experiments that found MHSIT in crossflow to have four proposed ignition regimes: conduction, convective cooling, turbulent mixing, and advection. The current study replicates the results from the initial set of experiments at new conditions and to determine the effects of surface temperature on the regimes. </div><div><br></div><div>The MHSIT of flammable liquids depends on several factors including leak type (spray or stream), liquid temperature, air temperature, velocity, and pressure. ASTM standardized methods for ignition are limited to stagnant and falling drops downward (autoignition) at atmospheric pressure (ASTM E659, ASTM D8211, and ASTM E1491) and at pressures from 218 to 203 kPa (ASTM G72). Past studies have shown that MHSIT decreases with increasing pressure, but the available databases lack results of extensive experimental investigation. Therefore, such data for pressures between 101 to 203 kPa are missing or inadequate. As such the generic experimental apparatus was modified to produce the 101 to 203 kPa air duct pressure levels representative of a typical turbofan engine. </div><div><br></div><div>Machine learning (ML) and deep learning (DL) have become widely available in recent years. Open-source software packages and languages have made it possible to implement complex ML based data analysis and modeling techniques on a wide range of applications. The application of these techniques can expedite existing models or reduce the amount of physical lab investigation time required. Three data sets were utilized to examine the effectiveness of multiple ML techniques to estimate experimental outcomes and to serve as a substitute for additional lab work. To achieve this complex multi-variant regressions and neural networks were utilized to create estimating models. The first data sets of interest consist of a pool fire experiment that measured the flame spread rate as a function of initial fuel temperature for 8 different fuels, including Jet-A, JP-5, JP-8, HEFA-50, and FT-PK. The second data set consists of hot surface ignition data for 9 fuels including 4 alternative piston engine fuels for which properties were not available. The third data set is the MHSIT data generated by the generic experimental apparatus during the investigations conducted to expand the understanding of minimum hot surface ignition temperatures. When properties were not available multiple imputation by chained equations (MICE) was utilized to estimate fluid properties. Training and testing data sets were split up to 70% and 30% of the respective data set being modeled. ML techniques were implemented to analyze the data and R-squared values as high as 92% were achieved. The limitation of machine learning models is also discussed along with the advantages of physics-based approaches. The current study has furthered the application of ML in combustion through use of the MHSIT database.</div>
312

Carburetion system for biomass gas fueling of spark ignition engines

Goodman, Mark A. January 1984 (has links)
Call number: LD2668 .T4 1984 G666 / Master of Science
313

Beef and swine digester gasses: evauluation [sic] as fuels for spark ignition engines

Marr, Jerry Dwight. January 1984 (has links)
Call number: LD2668 .T4 1984 M37 / Master of Science
314

In situ infared [i.e. infrared] studies of catalytic partial oxidation / In situ infrared studies of catalytic partial oxidation

Cao, Chundi January 1900 (has links)
Doctor of Philosophy / Department of Chemical Engineering / Keith L. Hohn / Catalytic partial oxidation (CPO) has received considerable interest recently both as a way to utilize remote natural gas resources and to provide H[subscript]2 for a fuel cell. Studies on the reactions at lower temperatures and transient conditions were performed, which can provide insights on the mechanism of CPO at high reactions, particularly on the role of the chemical and physical state of the noble metal catalyst. In this work, ignition of methane CPO on Pt/Al[subscript]2O[subscript]3 and Rh/Al[subscript]2O[subscript]3 catalysts and methanol CPO on Pt/Al[subscript]2O[subscript]3 catalysts were studied using in situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS). The ignition mechanism study of CH4 on Pt/Al[subscript]2O[subscript]3 showed that oxygen mainly covers the surface until ignition. Competition between the two reactants is assumed. The heat of adsorption of oxygen is a key factor for ignition of the methane partial oxidation reaction on Pt/Al[subscript]2O[subscript]3. The ignition mechanism on Rh/Al[subscript]2O[subscript]3 was found to be different from Pt/Al[subscript]2O[subscript]3. The oxidation state of the catalyst changed significantly as the temperature was raised towards the ignition. An oxidized rhodium state, Rh[superscript]n+, progressively formed as the temperature was increased while Rh[superscript]0 decreased. In addition, a greater amount of Rh[supercript]n+ was found when the oxygen concentration in the feed was higher. From these results, it is hypothesized that ignition of methane CPO on Rh/Al[subscript]2O[subscript]3 is related to the accumulation of the Rh[superscript]n+ state. Dissociation adsorption of methanol occurs on both Al2O3 and Pt/Al[subscript]2O[subscript]3. It is suggested that formate was one of the important intermediates in the reaction pathway. Oxygen species play a key role in the formation of formate on the catalysts, and it also affects the product composition. Formate mainly decomposed into CO, which is the dominant source for CO[subscript]2 production in the reactions at higher temperatures.
315

Hydrogen, nitrogen and syngas enriched diesel combustion

Christodoulou, Fanos January 2014 (has links)
On-board hydrogen and syngas production is considered as a transition solution from fossil fuel to hydrogen powered vehicles until problems associated with hydrogen infrastructure, distribution and storage are resolved. A hydrogen- or syngas-rich stream, which substitutes part of the main hydrocarbon fuel, can be produced by supplying diesel fuel in a fuel-reforming reactor, integrated within the exhaust pipe of a diesel engine. The primary aim of this project was to investigate the effects of intake air enrichment with product gas on the performance, combustion and emissions of a diesel engine. The novelty of this study was the utilisation of the dilution effect of the reformate, combined with replacement of part of the hydrocarbon fuel in the engine cylinder by either hydrogen or syngas. The experiments were performed using a fully instrumented, prototype 2.0 litre Ford HSDI diesel engine. The engine was tested in four different operating conditions, representative for light- and medium-duty diesel engines. The product gas was simulated by bottled gases, the composition of which resembled that of typical diesel reformer product gas. In each operating condition, the percentage of the bottled gases and the start of diesel injection were varied in order to find the optimum operating points. The results showed that when the intake air was enriched with hydrogen, smoke and CO emissions decreased at the expense of NOx. Supply of nitrogen-rich combustion air into the engine resulted in a reduction in NOx emissions; nevertheless, this technique had a detrimental effect on smoke and CO emissions. Under low-speed low-load operation, enrichment of the intake air with a mixture of hydrogen and nitrogen led to simultaneous reductions in NOx, smoke and CO emissions. Introduction of a mixture of syngas and nitrogen into the engine resulted in simultaneous reductions in NOx and smoke emissions over a wide range of the engine operating window. Admission of bottled gases into the engine had a negative impact on brake thermal efficiency. Although there are many papers in the literature dealing with the effects of intake air enrichment with separate hydrogen, syngas and nitrogen, no studies were found examining how a mixture composed of hydrogen and nitrogen or syngas and nitrogen would affect a diesel engine. Apart from making a significant contribution to existing knowledge, it is 3 believed that this research work will benefit the development of an engine-reformer system since the product gas is mainly composed of either a mixture of hydrogen and nitrogen or a mixture of syngas and nitrogen.
316

Biomass Pre-treatment for the Production of Sustainable Energy : Emissions and Self-ignition

Rupar-Gadd, Katarina January 2006 (has links)
Organic emissions with focus on terpenes, from biomass drying and storage were investigated by Solid Phase Microextraction (SPME) and GC-FID and GC-MS. The remaining terpenes in the biomass (Spruce and pine wood chips) after drying were dependant on the drying temperature and drying medium used. The drying medium used was steam or hot air; the drying temperatures used were 140degreeC, 170degreeC and 200degreeC. Steam drying at 170degreeC left more of the terpenes remaining in the wood chips, not emitting them into the drying medium. The terpenes emitted from storage of forest residues and bark and wood chips increased up to three-four or four-five months of storage, and then dropped down to approximately the same low level as the first month. The leachate taken from the forest residue pile contained 27µg PAH per liter. The SPME response for a monoterpene (a-terpene) at different temperatures, amounts and humidities was quantified. The highest concentration calibrated was 250 ppm and the lowest 9.4 ppm. There is a better linear agreement at higher temperatures (70degreeC and 100degreeC) than lower temperatures (below 40degreeC). Organic emissions from biofuel combustion were measured at three medium sized (~ 1MW) biomass fired moving grate boilers fired with different fuels: dry wood fuel, forest residues and pellets. The PAH emissions varied by almost three orders of magnitude between the three boilers tested, 2.8-2500 microgram/m3. It was difficult to identify any general parameters correlating to the PAH emissions. The variation in PAH emission is most probably a result of boiler design and tuning of the combustion conditions. When comparing the contribution to self-heating from different wood materials by means of isothermal calorimetry with different metals added and stored at different temperatures, the differences were quite large. Some of the samples released as much as 600mW/kg, whereas others did not contribute at all to the self-heating. The storage temperature, at which the samples released the most heat, was 50C. There was a peak in heat release for most of the samples after 10-30 days. Stepwise increase in temperature did not favour the heat release in the sample Dry Mix; the heat released was even lower than when it was directly put in the different storage temperatures. When metal is added, there is an increase in heat release, the reference sample without metal released 200mW/kg compared to 600mW when copper was added.
317

Development of an engine testing facility for spark ignition engine fuels

Kenny, Wilhelm Jordaan 03 1900 (has links)
Thesis (MScEng)--Stellenbosch University, 2013. / ENGLISH ABSTRACT: This thesis comprises of the development of a facility were spark ignition engine fuels can be tested. Development of the facility included the installation of a standard spark ignition engine, an engine dynamometer, control and monitoring equipment, control and monitoring software, and an in-cylinder pressure measurement setup. The system was tested using petrol as well as a petrol-ethanol blend. The results indicated good accuracy and repeatability of the system. Analysis of the performance and combustion of the petrol-ethanol blend showed no significant difference in comparison to the petrol fuel. The petrol-ethanol blend showed a slight increase in oxygen content and fuel consumption as well as an increase in CO2 emissions and a decrease in CO emissions. During the project, a comparison was also made between the performance of fibre optic transducers and a piezoelectric transducer. It was found that the fibre optic transducers performed similarly to the piezoelectric transducer during low engine load conditions. At high load conditions however, the fibre optic transducers were not able to produce the same accuracy as the piezoelectric transducer. / AFRIKAANSE OPSOMMING: Hierdie tesis bestaan uit die ontwikkeling van 'n fasiliteit waar brandstowwe vir 'n vonkontsteking binnebrandenjin getoets kan word. Ontwikkeling van die fasiliteit sluit in die installering van 'n standaard vonkontsteking binnebrandenjin, 'n enjin rem, beheer en monitering toerusting, beheer en monitering sagteware, en 'n insilinder drukmeting opstelling. Die fasiliteit is getoets met suiwer petrol sowel as 'n petrol-etanol mengsel. Die resultate het hoë vlakke van akkuraatheid en herhaalbaarheid getoon. Ontleding van die werksverrigting en verbranding van die petrol-etanol mengsel het geen beduidende verskil getoon in vergelyking met die suiwer petrol brandstof nie. Die petrol-etanol mengsel het 'n effense toename in suurstofinhoud, brandstofverbruik, sowel as CO2 vrylating en 'n afname in CO vrylating getoon. Tydens die projek is 'n vergelyking getref tussen die akkuraatheid van optiese vesel drukmeters en 'n piësoëlektriese drukmeter. Daar is bevind dat die akkuraatheid van die optiese vesel drukmeters soortgelyk is aan die piësoëlektriese drukmeter gedurende lae enjin lastoestande. By hoë las omstandighede was die optiese vesel drukmeters egter nie in staat om dieselfde akkuraatheid as die piësoëlektriese drukmeter te handhaaf nie.
318

Modellering av flisstack / Modelling of a Wood Chip Pile

Zilén, Martin, Lejnarová, Ulrika January 2010 (has links)
<p>Bioenergi är en stor industri i Sverige och står för en betydande del av energiomsättningen. Bioenergi i form av flis förvaras runt om i landet på hög i väntan på förbränning. Då högarna läggs upp startar olika processer som värmer upp stacken, ofta till temperaturer på 50°C under det första dygnet. En vanlig ansats i litteraturen är att denna temperaturstegring beror på aerob nedbrytning. Arbetet ämnar undersöka om denna uppvärmning endast beror av mikrobiella aktiviteter. Hypotesen prövas genom kalorimetriska mätningar av effekt från prover av flis och simulering av första dygnets temperaturutveckling i ett program som programmeras under arbetes gång.</p><p>I modellen så betraktas för enkelhets skulle flisstacken som en avlång figur med rektangulärt tvärsnitt. Figuren delas sedan in i lämpligt stora beräkningsceller. Problemet löses genom att iterativt räkna fram ett strömningsfält. Strömningsfältet och effekterna som räknas ut hålls sedan konstanta under ett tidssteg, 5-15min. Den magasinerade värmeenergin används sedan för att räkna fram en ny temperatur som så ger ett nytt strömningsfält och nya effekter. I modellen användes enbart explicita metoder eftersom de är snabbare och mycket enklare att programmera.</p><p>Ett flertal experiment i kalorimeter genomfördes med olika prover av flis och torv. Prover med barkflis gav högst utslag. Den högsta effekten som uppmättes var 2,16W/kg TS. Då effekter av denna storleksordning användes som inre effektgenerering i programmet gav detta inte en temperatur ökning motsvarande sådana som uppmätts i verkligheten. Detta tyder på att mer än aerob nedbrytning krävs för att ge en temperatur på över 50°C.</p> / <p>Bioenergy is a major industry in Sweden and accounts for a significant part of the energy production. Bioenergy in the form of wood chips is stored in piles across the country awaiting combustion. When the piles are acumulated, various processes that heat the stack begin, often to temperatures of 50 °C during the first day. A common approach in the literature is that this temperature rise is due to the aerobic decomposition. This paper will investigate whether the microbial activity is the fundamental cause for warming. The hypothesis is tested by calorimetric measurements of power from the samples of wood chips and simulation of the first day's temperature development in a programme that was desinated.</p><p>For simplicity the model considers an oblong wood chip pile with rectangular cross-section. The pile is then subdivided into appropriately sized calculation cells. The problem is solved by calculating a flow field iteratively. The flow field and the effects that are calculated is then static during one time step for approximately 5-15 minutes. The produced heat energy is then used to calculate a new temperature, which renders a new flow field and new powers. The model uses only explicit methods because they are faster and much easier to programme.</p><p>Several calorimetric experiments were carried out with various samples of wood chips and peat. Samples of bark chips achieved the highest result. The highest power measured was 2.16 W / kg DM. When the effects of this magnitude were used as internal power source in the programme the temperature did not increase corresponding to those measured in reality. This suggests that more than aerobic decomposition is needed to reach a temperature above 50°C.</p>
319

The interaction of picosecond high intensity laser pulses with preformed plasmas and solid targets

Gaillard, Romain Philippe January 1999 (has links)
No description available.
320

Investigation of performance and characteristics of a multi-cylinder gasoline engine with controlled auto-ignition combustion in naturally aspirated and boosted operation

Martins, Mario Eduardo Santos January 2007 (has links)
Controlled Auto-Ignition (CAI) also known as Homogeneous Charge Compression Ignition (HCCI) is increasingly seen as a very effective way of lowering both fuel consumption and emissions. Hence, it is regarded as one of the best ways to meet stringent future emissions legislation. It has however, still many problems to overcome, such as limited operating range. This combustion concept was achieved in a production type, 4-cylinder gasoline engine, in two separated tests: naturally aspirated and turbocharged. Very few modifications to the original engine were needed. These consisted basically of a new set of camshafts for the naturally aspirated test and new camshafts plus turbocharger for the boosted test. The first part of investigation shows that naturally aspirated CAI could be readily achieved from 1000 to 3500rpm. The load range, however, decreased noticeably with engine speed due to flow restrictions imposed by the low lift camshafts. Ultra-low levels of NOx emissions and reduced fuel consumption were observed. After baseline experiments with naturally aspirated operation, the capability of turbocharging for extended CAI operation was investigated. The results show that the CAI range could achieve higher load and speed with the addition of the turbocharger. The engine showed increased fuel consumption due to excessive pumping losses. Emissions, however, have been reduced substantially in comparison to the original engine. NOx levels could be reduced by up to 98% when compared to a standard SI production engine.

Page generated in 0.1677 seconds