• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 243
  • 42
  • 36
  • 30
  • 12
  • 6
  • 5
  • 4
  • 4
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 602
  • 309
  • 166
  • 135
  • 135
  • 114
  • 98
  • 94
  • 85
  • 70
  • 56
  • 51
  • 50
  • 49
  • 48
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
291

Flame stabilization by a plasma driven radical jet in a high speed flow

Choi, Woong-Sik 18 May 2009 (has links)
In current afterburners combustion is stabilized by the high temperature, recirculating region behind bluff body flame holders, such as V-gutters. Blocking the high speed flow with bluff bodies causes a significant pressure drop, and heating the flame holder by the hot combustion product causes a thermal signature, which is a critical problem in a military jet. To reduce these problems, ignition methods using a high frequency (HF) spark discharge, or a radical jet generator (RJG) were developed. The HF discharge ignited and stabilized a flame successfully in a premixed methane-air flow. The electrical power consumption was very small compared to the combustion heat release, as long as the operating velocity was relatively low. However, a theoretical study showed that the ratio of the electrical power consumption to the heat generation by the stabilized flame increases rapidly with increasing flow velocity. For flame stabilization in a high velocity flow, the developed RJG showed much better performance than direct exposure to a plasma. The present study investigated the characteristics of a radical jet produced in a RJG and injected into a main combustor. The limits of flame stabilization by this jet was measured experimentally, and compared to those of bluff body flame holders. The flame holding performance of the radical jet was also experimentally compared to that of a thermal jet. The effect of radicals on flame stabilization was examined using CHEMKIN, and the limit of flame stabilization by the radical jet was estimated for a simple flow configuration using an approximate solution. The results suggest that the reduction of local spontaneous ignition delay time by active species in the radical jet and the longer length of a typical radical jet compared to the dimension of the recirculation zone behind a bluff body increases the maximum velocity at which a flame can be stabilized.
292

En resa tillbaka i tiden för att förstå framtiden : En undersökning av organiskt material i eoliska lössjordssediment på västra Grönland, Kangerlussuaq. / A Journey Back in Time to Understand the Future : A Study of Organic Material in Aeolian Loess Sediments in Western Greenland, Kangerlussuaq.

Morin, Caroline, Sundman, Jessica January 2021 (has links)
Today's changing climate on Earth makes climate research more important than ever. By providing an understanding of the Earth's history and in particular places where large-scale climate change is taking place, for example Greenland, can one get an understanding about how the Earth will react in the future. In this report has eolian loess deposits been analyzed from the permafrost region on Greenland, near the city Kangerlussuaq (Hällberg 2018). The eolian sediment can contain organic carbon that shows climate conditions during the time when the sedimentation occurred. In this report, the organic carbon has been measured using loss of ignition (LOI). The method is well-tried and measures the loss of weight in the samples, which answers to the loss of organic carbon (Dean 1974). The samples were heated to 100°C and thereafter burned at 550°C. The results from the LOI have been analyzed and compared to other data from the same location. This includes data from carbon-14 dating, X-ray fluorescence, grain size and magnetic susceptibility. The final data set has been mapped in the geographical information system. The maps gave an overview of the changes in the area. Results shows that there are connections between organic carbon and climate change in Greenland, which also is proved by correlation to other studies. / Det rådande klimathotet och det föränderliga klimatet på jorden gör att klimatstudier är viktigare än någonsin. Genom att få en förståelse för jordens historia i synnerhet på platser där stora klimatförändringar sker, så som på Grönland, kan en uppfattning fås om hur vår jord kommer påverkas. I uppsatsen har eoliskt avsatt lössjord analyserats från permafrostområdet på Grönland, nära staden Kangerlussuaq (Hällberg 2018). Det eoliska sedimentet innehåller organiskt material som avspeglar klimatförhållanden på platsen för tiden då sedimentationen inträffade. I arbetet har innehållet av organiskt material undersökts genom metoden Loss of Ignition (LOI). Metoden är välbeprövad och går ut på att mäta förlust i vikt vilket motsvarar förlust av organiskt material (Dean 1974). Proverna har torkats i 100°C och därefter bränts i 550°C. Resultatet som gavs av LOI har analyserats och jämförts med annan data från samma lokaler. De innefattar kol 14-metoden, röntgenfluorescens, kornstorlek och magnetisk susceptibilitet. Den slutgiltiga datauppsätningen har genom kartverktyget Geografisk Informationssystem karterats. Kartorna gav övergripande bild på de rumsliga förändringarna i området. Resultaten visar att det finns samband mellan organiskt material och klimatet på Grönland vilket även bevisas av korrelation med andra studier.
293

Experimental investigation of hot-jet ignition of methane-hydrogen mixtures in a constant-volume combustor

Paik, Kyong-Yup 12 1900 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Investigations of a constant-volume combustor ignited by a penetrating transient jet (a puff) of hot reactive gas have been conducted in order to provide vital data for designing wave rotor combustors. In a wave rotor combustor, a cylindrical drum with an array of channels arranged around the axis spins at a high rpm to generate high-temperature and high-pressure product gas. The hot-gas jet ignition method has been employed to initiate combustion in the channels. This study aims at experimentally investigating the ignition delay time of a premixed combustible mixture in a rectangular, constant-volume chamber, representing one channel of the wave rotor drum. The ignition process may be influenced by the multiple factors: the equivalence ratio, temperature, and the composition of the fuel mixture, the temperature and composition of the jet gas, and the peak mass flow rate of the jet (which depends on diaphragm rupture pressure). In this study, the main mixture is at room temperature. The jet composition and temperature are determined by its source in a pre-chamber with a hydrogen-methane mixture with an equivalent ratio of 1.1, and a fuel mixture ratio of 50:50 (CH4:H2 by volume). The rupture pressure of a diaphragm in the pre-chamber, which is related to the mass flow rate and temperature of the hot jet, can be controlled by varying the number of indentations in the diaphragm. The main chamber composition is varied, with the use of four equivalence ratios (1.0, 0.8, 0.6, and 0.4) and two fuel mixture ratios (50:50, and 30:70 of CH4:H2 by volume). The sudden start of the jet upon rupture of the diaphragm causes a shock wave that precedes the jet and travels along the channel and back after reflection. The shock strength has an important role in fast ignition since the pressure and the temperature are increased after the shock. The reflected shock pressure was examined in order to check the variation of the shock strength. However, it is revealed that the shock strength becomes attenuated compared with the theoretical pressure of the reflected shock. The gap between theoretical and measured pressures increases with the increase of the Mach number of the initial shock. Ignition delay times are obtained using pressure records from two dynamic pressure transducers installed on the main chamber, as well as high-speed videography using flame incandescence and Schileren imaging. The ignition delay time is defined in this research as the time interval from the diaphragm rupture moment to the ignition moment of the air/fuel mixture in the main chamber. Previous researchers used the averaged ignition delay time because the diaphragm rupture moment is elusive considering the structure of the chamber. In this research, the diaphragm rupture moment is estimated based on the initial shock speed and the longitudinal length of the main chamber, and validated with the high-speed video images such that the error between the estimation time and the measured time is within 0.5%. Ignition delay times decrease with an increase in the amount of hydrogen in the fuel mixture, the amount of mass of the hot-jet gases from the pre-chamber, and with a decrease in the equivalence ratio. A Schlieren system has been established to visualize the characteristics of the shock wave, and the flame front. Schlieren photography shows the density gradient of a subject with sharp contrast, including steep density gradients, such as the flame edge and the shock wave. The flame propagation, gas oscillation, and the shock wave speed are measured using the Schlieren system. An image processing code using MATLAB has been developed for measuring the flame front movement from Schlieren images. The trend of the maximum pressure in the main chamber with respect to the equivalence ratio and the fuel mixture ratio describes that the equivalence ratio 0.8 shows the highest maximum pressure, and the fuel ratio 50:50 condition reveals lower maximum pressure in the main chamber than the 30:70 condition. After the combustion occurs, the frequency of the pressure oscillation by the traversing pressure wave increases compared to the frequency before ignition, showing a similar trend with the maximum pressure in the chamber. The frequency is the fastest at the equivalence ratio of 0.8, and the slowest at a ratio of 0.4. The fuel ratio 30:70 cases show slightly faster frequencies than 50:50 cases. Two different combustion behaviors, fast and slow combustion, are observed, and respective characteristics are discussed. The frequency of the flame front oscillation well matches with that of the pressure oscillation, and it seems that the pressure waves drive the flame fronts considering the pressure oscillation frequency is somewhat faster. Lastly, a feedback mechanism between the shock and the flame is suggested to explain the fast combustion in a constant volume chamber with the shock-flame interactions.
294

Laser Spark Ignition of Counter-flow Diffusion Flames: Effects of diluents and diffusive-thermal properties

Segura, Fidelio Sime 01 January 2012 (has links)
A pulsed Nd:YAG laser is used to study laser spark ignition of methane counter-flow diffusion flames with the use of helium and argon as diluents to achieve a wide range of variations in transport properties. The global strain rate and Damkohler number on successful ignition were investigated for the effects of Lewis number and transport properties, which are dependent on the diluent type and dilution level. A high-speed camera is used to record the ignition events and a software is used for pre-ignition flow field and mixing calculations. It is found that the role of effective Lewis number on the critical global strain rate, beyond which ignition is not possible, is qualitatively similar that on the extinction strain rate. With the same level of dilution, the inert diluent with smaller Lewis number yields larger critical global strain rate. The critical Damkohler number below which no ignition is possible is found to be within approximately 20% for all the fuel-inert gas mixtures studied. When successful ignition takes place, the ignition time increases as the level of dilution of argon is increased. The ignition time decreases with increasing level of helium dilution due to decreases in thermal diffusion time, which causes rapid cooling of the flammable layer during the ignition process. However, the critical strain for ignition with helium dilution rapidly decreases as the dilution level is increased. The experimental results show that with the increase of strain rate the time to steady flame decreases, and that with the increase of dilution level time for the flame to become steady increases. For the same level of dilution, the time for steady flame is observed to be longer for He-diluted flames than for Ar-diluted flames due to its thermal diffusivity being larger than that of Ar.
295

OPTICAL IGNITION AND COMBUSTION CHARACTERIZATION OF METAL FLUOROPOLYMER COMPOSITES

Kyle Uhlenhake (14153403) 28 November 2022 (has links)
<p>The ignition of energetic materials, and specifically solid propellants, is a complex process</p> <p>that must be safe, consistent, and precisely controlled. There is a wide range of applications with</p> <p>specific ignition requirements for solid propellants including inflation of airbags, propulsion</p> <p>systems (including rockets), as well as arm and fire devices. Currently, electrical or percussion</p> <p>pyrotechnic igniters are most the commonly used ignition systems. These systems must be</p> <p>carefully designed to deliver the proper amount of energy to a specified surface area of the</p> <p>propellant. A photon light source (i.e. flash or laser-based, ranging from UV to IR wavelengths)</p> <p>can potentially be used to ignite energetic materials with lower input energy and more precise</p> <p>spatial and temporal control, thereby improving safety and reliability by eliminating electrical</p> <p>systems used in pyrotechnic igniters. In addition, they could be potentially safer from stray</p> <p>electrical charges causing unintentional ignition.</p> <p>The purpose of this work is to further explore the potential of optical ignition for energetic</p> <p>systems and identify ideal materials that can be used for optical ignition. In order to identify</p> <p>optically sensitive materials, we will study ignition energies, ignition delays, flame temperatures,</p> <p>and other combustion characteristics for possible energetic materials. This research addresses a</p> <p>gap in understanding of optical ignition for energetic materials, as finding and integrating materials</p> <p>that are optically sensitive while still being practical can be extremely challenging. These</p> <p>challenges include: (1) a lack of absorptivity to optical wavelengths in the UV to low-IR range,</p> <p>and subsequently, a very high sensitivity to input energy at the absorptive wavelengths that makes</p> <p>sustained ignition difficult, (2) a need for full density materials in practical energetic systems,</p> <p>while optically sensitive materials are exceedingly difficult to ignite as packing density increases</p> <p>due to heat transfer, and (3) the lack of research regarding novel fuels/oxidizers for the specific</p> <p>purpose of optical ignition.</p> <p>Metal/fluoropolymer energetic materials have been of interest to the energetic materials</p> <p>community for many years. Due to fluorine’s excellent oxidizing ability, they can be used in</p> <p>composite materials with metal fuels to produce energetic materials for a wide variety of</p> <p>applications. Polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVDF), polycarbon</p> <p>13</p> <p>monofluoride (PMF), and terpolymers such as tetrafluoroethylene, hexafluoropropylene, and</p> <p>vinylidene fluoride (THV) have already seen extensive use in applications ranging including</p> <p>protective coatings, strain gauges, and electronics. However, when combined with metals such as</p> <p>lithium, magnesium, aluminum, or titanium, they also present an opportunity for a wide variety of</p> <p>energetic materials. For this study, metal/fluoropolymer composites present a novel opportunity</p> <p>for exploring optical ignition of widely absorptive, full-density energetic materials. This work will</p> <p>characterize the combustion and sensitivity of metal/fluoropolymer composites to provide novel</p> <p>materials for optical ignition of energetics.</p> <p>Specifically, this work will begin with finding a suitable energetic composite that is optically</p> <p>sensitive. Once this material has been identified, research will be done to thoroughly characterize</p> <p>the optically sensitive composite by looking at additive manufacturability, flame temperatures, and</p> <p>ignition sensitivities from various methods and formulations. Once the material has been</p> <p>thoroughly characterized, it will be implemented into solid propellants to test the feasibility of the</p> <p>material in practical energetic systems. Finally, the lessons learned from this work will be applied</p> <p>to novel formulations to identify new optically sensitive energetic composites.</p>
296

Ignition and Combustion Characteristics of Nanoscale Metal and Metal Oxide Additives in Biofuel (Ethanol) and Hydrocarbons

Jones, Matthew January 2011 (has links)
No description available.
297

Dependency of Aluminum Nanoparticle Flash Ignition on Sample Internal Water Content and Aggregation

Stenger, Dillon Michael January 2016 (has links)
No description available.
298

Contribution à la compréhension des combustions anormales dans les moteurs à allumage commandé : caractérisation et analyse phénoménologique du pré allumage à forte charge / Contribution the understanding of abnormal combustions in spark ignition engines : characterization and phenomenological analysis of pre-ignition at high load

Zaccardi, Jean-Marc 09 March 2012 (has links)
L'augmentation continue des charges de fonctionnement des moteurs à allumage commandé a conduit à l'apparition d'une nouvelle forme de combustion anormale à bas régime sous la forme d'un pré allumage. Dans des conditions de pression et de température extrêmes, une auto-inflammation incontrôlée du mélange carburé peut en effet se produire avant l'allumage normal à la bougie et conduire à une seconde auto-inflammation de type cliquetis donnant naissance à des oscillations de pression inacceptables même pour les moteurs les plus robustes. Cette anomalie constitue donc une véritable limite au downsizing des moteurs et à l'augmentation de leurs performances spécifiques. Cette dernière forme de combustion anormale est bien plus critique que le cliquetis car son apparition est aléatoire, le plus souvent sporadique et généralement très violente. Ces caractéristiques fondamentales expliquent que de nouveaux outils et de nouvelles méthodologies d'analyse aient dû être développés pour mieux caractériser le processus d'auto-inflammation dans ces conditions extrêmes. Des méthodes statistiques avancées ont notamment été mises au point pour quantifier de manière fiable la fréquence d'apparition du pré allumage malgré son caractère aléatoire. En parallèle, un travail expérimental important a été réalisé pour mettre au point une méthodologie de réalisation de visualisations endoscopiques permettant de mieux analyser le processus de combustion, et d'identifier de manière plus précise les zones préférentielles d'apparition du pré allumage dans la chambre de combustion. Les impacts des paramètres fondamentaux régissant l'auto-inflammation (aérodynamique interne, thermique et chimie du mélange) ont d'abord été analysés sur un monocylindre de recherche. Le processus de combustion a ainsi été détaillé et l'hypothèse d'une auto-inflammation spontanée en phase gazeuse a également pu être abordée en parallèle de l'analyse expérimentale par une approche numérique RANS. Une étude plus approfondie a ensuite montré qu'il était possible qu'un pré allumage conduise à une auto-inflammation de type détonation, ce qui explique qu'un nombre réduit d'occurrences suffise à détériorer irrémédiablement le moteur. La versatilité du monocylindre a également permis de mettre en évidence la diversité des phénomènes qui pouvaient conduire au pré allumage et d'autres hypothèses que celle d'une auto-inflammation spontanée en phase gazeuse ont ainsi pu être formulées. Celles-ci ont finalement été testées sur un multicylindre en appliquant des méthodologies d'essais et d'analyse éprouvées sur monocylindre. Les investigations tournées vers l'impact des réglages moteur ont alors notamment confirmé que les impacts du carburant sur les parois de la chambre de combustion conduisaient à la formation de films liquides dont les caractéristiques locales pouvaient être favorables à une auto-inflammation. / The continuous increase of engine loads on SI engines has provoked the apparition of a new form of abnormal combustion at low engine speed in the guise of a pre-ignition. Under extreme conditions of pressure and temperature, an uncontrolled auto-ignition of the fresh mixture can happen well before the normal ignition at the spark and lead to a knocking-like second auto-ignition and to unacceptable pressure oscillations even for modern and robust engines. This anomaly constitutes thus a strong limit to the downsizing of gasoline engines and to the increase of their specific performance. This latter abnormal combustion is far more critical than knocking combustion since its apparition is random, most often sporadic and usually very violent. These fundamental characteristics explain that new tools and methodologies had to be developed to achieve a better characterization of the auto-ignition process under such extreme conditions. Advanced statistical methods have notably been defined to obtain a reliable quantification of the pre-ignition frequency despite its randomness. A significant work has simultaneously been realized to develop an experimental methodology dedicated to endoscopic visualizations allowing a better analysis of the combustion process and a more precise identification of the preferential areas of auto-ignition inside the combustion chamber. The impacts of fundamental parameters governing auto-ignition (the mixture's charge motion, thermal and chemical evolutions) have first been analyzed thanks to a research single cylinder engine. That way, the combustion process has been detailed and the hypothesis of a spontaneous auto-ignition of the gaseous mixture has also been tackled at the same time with the help of a numerical RANS approach. Then, a deeper analysis has showed that pre-ignition could lead to a developing detonation mode during the second auto-ignition, explaining so that a reduced number of events could cause irremediable damages. Thanks to the flexibility of the single cylinder engine, it has also been shown that a wide variety of phenomena could lead to pre-ignition and it has made possible the formulation of other hypotheses than a spontaneous auto-ignition of the gaseous mixture. These ones have finally been tested on a serial multi-cylinder engine with test and analysis methodologies validated on the single cylinder engine. The investigations focused on the impacts of settings have then confirmed that the fuel impacts on the liner and on the piston lead to the formation of liquid films whose local characteristics could be favorable to auto-ignition.
299

Software pro řízení zapalování a vstřikování spalovacích motorů / Engine Motormanagement Software

Huška, Lukáš January 2010 (has links)
This master thesis deals with ignition systems which are used in cars vehicles with gas engines and also with setting of the best moment of ignition of gasoline-air mixture in cylinders of engine. Ways of gas injection at diesel engines and their control systems are also described in this thesis. Next chapter deals with control unit and describes main actions which are necessary for today’s motor vehicles. As illustration is used example of succession of actions which are necessary for calculation and setting regular value of pre-ignition. At the end is shown animation, which can be used for practice lessons in a subject Automobile Electric and Electronic Systems as a example. It will simplify understanding of described activities which are all accomplished by central control unit. For purposes of laboratory lessons is in this thesis also discussed measuring of engine performance with changes of parameter of central control unit.
300

LES of two-phase reacting flows : stationary and transient operating conditions / Simulations aux grandes échelles découlements diphasiques réactifs : régimes stationnaires et transitoires

Eyssartier, Alexandre 05 October 2012 (has links)
L'allumage et le réallumage de haute altitude présentent de grandes difficultés dans le cadre des chambres de combustion aéronautiques. Le succès d'un allumage dépend de multiples facteurs, des caractéristiques de l'allumeur à la taille des gouttes du spray en passant par le niveau de turbulence au point d'allumage. Déterminer la position optimale de l'allumeur ou le potentiel d'allumage d'une source d'énergie donnée à une position donnée sont ainsi des paramètres essentiels lors du design de chambre de combustion. Le but de ces travaux de thèse est d'étudier l'allumage forcé des chambres de combustion aéronautiques. Pour cela, des Simulation numériques aux Grandes Echelles (SGE) d'écoulements diphasiques réactifs sont utilisées et analysées. Afin de les valider, des données expérimentales issues du banc MERCATO installé à l'ONERA Fauga-Mauzac sont utilisées. Cela permet dans un premier temps de valider la méthodologie ainsi que les modèles utilisés pour les SGE diphasiques évaporantes avant leur utilisation dans d'autres conditions d'écoulement. Le cas diphasique réactif statistiquement stationnaire est ensuite comparé aux données disponibles pour évaluer les modèles en condition réactives. Ce cas est étudié plus en détail à travers l'analyse de caractéristiques de la flamme. Celle-ci semble être le théâtre de régimes de combustion très différents. On note aussi que la détermination de la méthode numérique la plus appropriée pour le calcul d'écoulements diphasiques n'est pas évidente. De plus, deux méthodes numériques différentes peuvent donner des résultats en bon accord avec l'expérience et pourtant avoir des modes de combustion différents. Les capacités de la SGE à correctement calculer un écoulement diphasique réactif étant validé, des SGE du phénomène transitoire d'allumage sont effectuées. La sensibilité observée expérimentalement de l'allumage aux conditions initiales, i.e. à l'instant de claquage, est retrouvé par les SGE. L'analyse met en évidence le rôle prépondérant de la dispersion du spray dans le développement initial du noyau de flamme. L'utilisation des SGE pour calculer les séquences d'allumage fournie de nombreuses informations sur le phénomène d'allumage, cependant d'un point de vue industriel, cela ne donne pas de résultat optimal, à moins de ne tester toutes les positions, ce qui rendrait le coût CPU déraisonnable. Des alternatives sont donc nécessaires et font l'objet de la dernière partie de ces travaux. On propose de dériver un critère local d'allumage, donnant la probabilité d'allumage à partir d'un écoulement diphasique (air et carburant) non réactif instationnaire. Ce modèle est basé sur des critères liés aux différentes phases menant à un allumage réussi, de la formation d'un premier noyau à la propagation de la flamme vers l'injecteur. Enfin, des comparaisons avec des données expérimentales sur des chambres aéronautiques sont présentées et sont en bon accord, indiquant que le critère d'allumage proposé, couplé avec une SGE d'écoulement diphasique non réactif, peut être utilisé pour optimiser la puissance et la position du système d'allumage. / Ignition and altitude reignition are critical issues for aeronautical combustion chambers. The success of ignition depends on multiple factors, from the characteristics of the igniter to the spray droplet size or the level of turbulence at the ignition site. Finding the optimal location of the igniter or the potential of ignition success of a given energy source at a given location are therefore parameters of primary importance in the design of combustion chambers. The purpose of this thesis is to study forced ignition of aeronautical combustion chambers. To do so, Large Eddy Simulations (LES) of two-phase reacting flows are performed and analyzed. First, the equations of the Eulerian formalism used to describe the dispersed phase are presented. To validate the successive LES, experimental data from the MERCATO bench installed at ONERA Fauga-Mauzac are used. It allows to validate the two-phase evaporating flow LES methodology and models prior to its use to other flow conditions. The statistically stationary two-phase flow reacting case is then compared to available data to evaluate the model in reacting conditions. This case is more deeply studied through the analysis of the characteristics of the flame. This last one appears to experience very different combustion regimes. It is also seen that the determination of the most appropriate methodology to compute two-phase flow flame is not obvious. Furthermore, two different methodologies may both agree with the data and still have different burning modes. The ability of the LES to correctly compute burning two-phase flow being validated, LES of the transient ignition phenomena are performed. The experimentally observed sensitivity of ignition to initial conditions, i.e. to sparking time, is recovered with LES. The analysis highlights the major role played by the spray dispersion in the development of the initial flame kernel. The use of LES to compute ignition sequences provides a lot of information about the ignition phenomena, however from an industrial point of view, it does not give an optimal result, unless all locations are tested, which brings the CPU cost to unreasonable values. Alternatives are hence needed and are the objective of the last part of this work. It is proposed to derive a local ignition criterion, giving the probability of ignition from the knowledge of the unsteady non-reacting two-phase (air and fuel) flow. This model is based on criteria for the phases of a successful ignition process, from the first kernel formation to the flame propagation towards the injector. Then, comparisons with experimental data on aeronautical chambers are done and show good agreement, indicating that the proposed ignition criterion, coupled to a Large Eddy Simulation of the stationary evaporating two-phase non-reacting flow, can be used to optimize the igniter location and power.

Page generated in 0.0672 seconds