• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 34
  • 4
  • 3
  • 1
  • 1
  • 1
  • Tagged with
  • 45
  • 45
  • 45
  • 29
  • 19
  • 16
  • 14
  • 12
  • 12
  • 12
  • 11
  • 10
  • 10
  • 9
  • 9
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Non-Krylov Non-iterative Subspace Methods For Linear Discrete Ill-posed Problems

Bai, Xianglan 26 July 2021 (has links)
No description available.
22

Regularizability of ill-posed problems and the modulus of continuity

Bot, Radu Ioan, Hofmann, Bernd, Mathe, Peter January 2011 (has links)
The regularization of linear ill-posed problems is based on their conditional well-posedness when restricting the problem to certain classes of solutions. Given such class one may consider several related real-valued functions, which measure the wellposedness of the problem on such class. Among those functions the modulus of continuity is best studied. For solution classes which enjoy the additional feature of being star-shaped at zero, the authors develop a series of results with focus on continuity properties of the modulus of continuity. In particular it is highlighted that the problem is conditionally well-posed if and only if the modulus of continuity is right-continuous at zero. Those results are then applied to smoothness classes in Hilbert space. This study concludes with a new perspective on a concavity problem for the modulus of continuity, recently addressed by two of the authors in "Some note on the modulus of continuity for ill-posed problems in Hilbert space", 2011.
23

Iterative methods for the solution of the electrical impedance tomography inverse problem.

Alruwaili, Eman January 2023 (has links)
No description available.
24

Optimal rates for Lavrentiev regularization with adjoint source conditions

Plato, Robert, Mathé, Peter, Hofmann, Bernd 10 March 2016 (has links) (PDF)
There are various ways to regularize ill-posed operator equations in Hilbert space. If the underlying operator is accretive then Lavrentiev regularization (singular perturbation) is an immediate choice. The corresponding convergence rates for the regularization error depend on the given smoothness assumptions, and for general accretive operators these may be both with respect to the operator or its adjoint. Previous analysis revealed different convergence rates, and their optimality was unclear, specifically for adjoint source conditions. Based on the fundamental study by T. Kato, Fractional powers of dissipative operators. J. Math. Soc. Japan, 13(3):247--274, 1961, we establish power type convergence rates for this case. By measuring the optimality of such rates in terms on limit orders we exhibit optimality properties of the convergence rates, for general accretive operators under direct and adjoint source conditions, but also for the subclass of nonnegative selfadjoint operators.
25

Realization of source conditions for linear ill-posed problems by conditional stability

Hofmann, Bernd, Yamamoto, Masahiro 19 May 2008 (has links) (PDF)
We prove some sufficient conditions for obtaining convergence rates in regularization of linear ill-posed problems in a Hilbert space setting and show that these conditions are directly related with the conditional stability in several concrete inverse problems for partial differential equations.
26

Parameter choice in Banach space regularization under variational inequalities

Hofmann, Bernd, Mathé, Peter 17 April 2012 (has links) (PDF)
The authors study parameter choice strategies for Tikhonov regularization of nonlinear ill-posed problems in Banach spaces. The effectiveness of any parameter choice for obtaining convergence rates depend on the interplay of the solution smoothness and the nonlinearity structure, and it can be expressed concisely in terms of variational inequalities. Such inequalities are link conditions between the penalty term, the norm misfit and the corresponding error measure. The parameter choices under consideration include an a priori choice, the discrepancy principle as well as the Lepskii principle. For the convenience of the reader the authors review in an appendix a few instances where the validity of a variational inequality can be established.
27

Contribution à la résolution de problèmes inverses sous contraintes et application de méthodes de conception robuste pour le dimensionnement de pièces mécaniques de turboréacteurs en phase avant-projets. / Contribution to solving inverse problems under constraints and application of robust design methods for the design of mechanical parts of preliminary design stage

Biret, Maëva 18 November 2016 (has links)
L'objectif de ce travail est de proposer une nouvelle démarche pour améliorer et accélérer les études de dimensionnement des pièces de turboréacteurs en avant-projets. Il s'agit de fournir une méthodologie complète pour la conception robuste sous contraintes. Cette méthodologie consiste en trois étapes : la réduction de la dimension et la méta-modélisation, la conception robuste sous contraintes puis la résolution de problèmes inverses sous contraintes. Ce sont les trois principaux sujets abordés dans cette thèse. La réduction de la dimension est un pré-traitement indispensable à toute étude. Son but est de ne conserver, pour une sortie choisie du système, que les entrées influentes. Ceci permet de réduire la taille du domaine d'étude afin de faciliter la compréhension du système et diminuer les temps de calculs des études. Les méthodes de méta-modélisations contribuent également à ces deux objectifs. L'idée est de remplacer le code de calculs coûteux par un modèle rapide à évaluer et qui représente bien la relation entre la sortie étudiée et les entrées du système. La conception robuste sous contraintes est une optimisation bi-objectifs où les différentes sources d'incertitudes du système sont prises en compte. Il s'agit, dans un premier temps, de recenser et modéliser les incertitudes puis de choisir une méthode de propagation de ces incertitudes dans le code de calculs. Ceci permet d'estimer les moments (moyenne et écart-type) de la loi de la sortie d'intérêt. L'optimisation de ces moments constitue les deux objectifs de la conception robuste. En dernier lieu, il s'agit de choisir la méthode d'optimisation multi-objectifs qui sera utilisée pour obtenir l'optimum robuste sous contraintes. La partie innovante de cette thèse porte sur le développement de méthodes pour la résolution de problèmes inverses mal posés. Ce sont des problèmes pour lesquels il peut y avoir une infinité de solutions constituant des ensembles non convexes et même disjoints. L'inversion a été considérée ici comme un complément à l'optimisation robuste dans laquelle l'optimum obtenu ne satisfaisait pas une des contraintes. Les méthodes d'inversion permettent alors de résoudre ce problème en trouvant plusieurs combinaisons des entrées qui satisfont la contrainte sous la condition de rester proche de l'optimum robuste. Le but est d'atteindre une valeur cible de la contrainte non satisfaite tout en respectant les autres contraintes du système auxquelles on ajoute la condition de proximité à l'optimum. Appliquée au dimensionnement d'un compresseur HP en avants-projets, cette méthodologie s'inscrit dans l'amélioration et l'accélération des études marquées par de nombreux rebouclages chronophages en termes de ressources informatiques et humaines. / The aim of this PhD dissertation is to propose a new approach to improve and accelerate preliminary design studies for turbofan engine components. This approach consists in a comprehensive methodology for robust design under constraints, following three stages : dimension reduction and metamodeling, robust design under constraints and finally inverse problem solving under constraints. These are the three main subjects of this PhD dissertation. Dimension reduction is an essential pre-processing for any study. Its aim is to keep only inputs with large effects on a selected output. This selection reduces the size of the domain on which is performed the study which reduces its computational cost and eases the (qualitative) understanding of the system of interest. Metamodeling also contributes to these two objectives by replacing the time-consuming computer code by a faster metamodel which approximates adequately the relationship between system inputs and the studied output. Robust design under constraints is a bi-objectives optimization where different uncertainty sources are included. First, uncertainties must be collected and modeled. Then a propagation method of uncertainties in the computation code must be chosen in order to estimate moments (mean and standard deviation) of output distribution. Optimization of these moments are the two robust design objectives. Finally, a multi-objectives optimization method has to be chosen to find a robust optimum under constraints. The development of methods to solve ill-posed inverse problems is the innovative part of this PhD dissertation. These problems can have infinitely many solutions constituting non convex or even disjoint sets. Inversion is considered here as a complement to robust design in the case where the obtained optimum doesn't satisfy one of the constraints. Inverse methods then enable to solve this problem by finding several input datasets which satisfy all the constraints and a condition of proximity to the optimum. The aim is to reach a target value of the unsatisfied constraint while respecting other system constraints and the optimum proximity condition. Applied to preliminary design of high pressure compressor, this methodology contributes to the improvement and acceleration of studies currently characterized by a numerous of loopbacks which are expensive in terms of cpu-time and human resources.
28

Realization of source conditions for linear ill-posed problems by conditional stability

Hofmann, Bernd, Yamamoto, Masahiro 19 May 2008 (has links)
We prove some sufficient conditions for obtaining convergence rates in regularization of linear ill-posed problems in a Hilbert space setting and show that these conditions are directly related with the conditional stability in several concrete inverse problems for partial differential equations.
29

Optimal rates for Lavrentiev regularization with adjoint source conditions

Plato, Robert, Mathé, Peter, Hofmann, Bernd January 2016 (has links)
There are various ways to regularize ill-posed operator equations in Hilbert space. If the underlying operator is accretive then Lavrentiev regularization (singular perturbation) is an immediate choice. The corresponding convergence rates for the regularization error depend on the given smoothness assumptions, and for general accretive operators these may be both with respect to the operator or its adjoint. Previous analysis revealed different convergence rates, and their optimality was unclear, specifically for adjoint source conditions. Based on the fundamental study by T. Kato, Fractional powers of dissipative operators. J. Math. Soc. Japan, 13(3):247--274, 1961, we establish power type convergence rates for this case. By measuring the optimality of such rates in terms on limit orders we exhibit optimality properties of the convergence rates, for general accretive operators under direct and adjoint source conditions, but also for the subclass of nonnegative selfadjoint operators.
30

Parameter choice in Banach space regularization under variational inequalities

Hofmann, Bernd, Mathé, Peter January 2012 (has links)
The authors study parameter choice strategies for Tikhonov regularization of nonlinear ill-posed problems in Banach spaces. The effectiveness of any parameter choice for obtaining convergence rates depend on the interplay of the solution smoothness and the nonlinearity structure, and it can be expressed concisely in terms of variational inequalities. Such inequalities are link conditions between the penalty term, the norm misfit and the corresponding error measure. The parameter choices under consideration include an a priori choice, the discrepancy principle as well as the Lepskii principle. For the convenience of the reader the authors review in an appendix a few instances where the validity of a variational inequality can be established.

Page generated in 0.0879 seconds