• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 8
  • 8
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Dynamic Nanochannels for Biosensing Applications

Oxborrow, Joseph B 01 November 2013 (has links) (PDF)
Inexpensive label-free detection of biomarker panels in serum could revolutionize earlycancer diagnosis and treatment. Such detection capabilities may be possible with dynamicnanochannels in conjunction with electrical impedance measurement. In Dr. Greg Nordin's lab I designed, fabricated and tested several iterations of these sensors with polydimethyl-siloxane microfluidics. The final design yielded a dynamic nanochannel array sensor thatshowed a 140% impedance change when exposed to 14µM bovine serum albumin in phos-phate buffered saline. For the geometry and noise limits of the tested device, simulationsindicated that a minimum detectable concentration of 20pM with specifically bound strep-tavidin should be possible. However, the polydimethylsiloxane approach is also shown to beproblematic in meeting the trade-offs required for a practical device. Consequently, alter-native materials and designs are suggested to reduce the minimum detectable concentrationto the high femtomolar range, which would be attractive for detection of many medicalbiomarkers.
2

Integrin Mediated Mechanotransduction in Renal Vascular Smooth Muscle Cells

Balasubramanian, Lavanya 30 October 2007 (has links)
Integrins are transmembrane heterodimeric proteins that link extracellular matrix (ECM) to cytoskeleton and have been shown to function as mechanotransducers in non-muscle cells. Synthetic integrin-binding peptide triggers Ca2+ mobilization and contraction in vascular smooth muscle cells (VSMCs) from rat afferent arteriole, indicating that interactions between ECM and integrins modulate vascular tone. RGD, an integrin binding peptide, triggered contraction in cultured VSMCs as observed by Electric Cell-Substrate Impedance Sensing technique. To examine whether integrins transduce extracellular mechanical stress into intracellular Ca2+ signaling events in VSMCs, unidirectional mechanical force was applied to freshly isolated renal VSMCs through paramagnetic beads coated with fibronectin (FN, natural ligand of α5β1 integrin in VSMCs). Pulling of fibronectin-coated beads with electromagnet triggered Ca2+ sparks, followed by global Ca2+ mobilization. Paramagnetic beads coated with low-density lipoprotein (LDL), whose receptors are not linked to cytoskeleton, were minimally effective in triggering Ca2+ sparks and global Ca2+ mobilization. Pre-incubation with ryanodine, cytochalasin-D, or colchicine substantially reduced the occurrence of Ca2+ sparks triggered by fibronectin-coated beads. Binding of VSMCs with antibodies specific to the extracellular domains of alpha5 and beta1 integrins triggered Ca2+ sparks simulating the effects of fibronectin-coated beads. Anti-β2- integrin antibody served as the negative control. Traction force microscopy studies showed that only the force transduced via integrins could potentially trigger cytoskeletal remodeling in cultured VSMCs. Atomic force microscopy revealed a significant increase in surface roughness in VSMCs when treated with RGD peptide though there was no difference in the maximum deflection of the force curves. Pre-incubation of microperfused afferent arterioles with ryanodine or integrin specific binding peptide inhibited pressure-induced myogenic constriction. In conclusion, integrins transduce mechanical force into intracellular Ca2+ signaling events in renal VSMCs. Integrin-mediated mechanotransduction is probably involved in myogenic response of afferent arterioles. Thus, integrins can potentially act as sensors for myogenic response phenomenon and affect the autoregulatory mechanism in the vasculature.
3

Real-time bioimpedance measurements of stem cellbased disease models-on-a-chip

Gamal, Wesam January 2016 (has links)
In vitro disease models are powerful platforms for the development of drugs and novel therapies. Stem-cell based approaches have emerged as cutting-edge tools in disease modelling, allowing for deeper insights into previously unknown disease mechanisms. Hence the significant role of these disease-in-a-dish methods in therapeutics and translational medicine. Impedance sensing is a non-invasive, quantitative technique that can monitor changes in cellular behaviour and morphology in real-time. Bioimpedance measurements can be used to characterize and evaluate the establishment of a valid disease model, without the need for invasive end-point biochemical assays. In this work, two stem cell-based disease models-on-a-chip are proposed for acute liver failure (ALF) and age-related macular degeneration (AMD). The ALF disease model-on-a-chip integrates impedance sensing with the highly-differentiated HepaRG cell line to monitor in real-time quantitative and dynamic response to various hepatotoxins. Bioimpedance analysis and modelling has revealed an unknown mechanism of paracetamol hepatotoxicity; a temporal, dose-dependent disruption of tight junctions (TJs) and cell-substrate adhesion. This disruption has been validated using ultrastructural imaging and immunostaining of the TJ-associated protein ZO-1. Age-related macular degeneration (AMD) is the leading cause of blindness in the developed world with a need for disease models for its currently incurable forms. Human induced pluripotent stem cells (hiPSCs) technology offers a novel approach for disease modelling, with the potential to impact translational retinal research and therapy. Recent developments enable the generation of Retinal Pigment Epithelial cells from patients (hiPSC-RPE), thus allowing for human retinal disease in vitro studies with great clinical and physiological relevance. In the current study, the development of a tissue-on- a-chip AMD disease model has been established using RPE generated from a patient with an inherited macular degeneration (case cell line) and from a healthy sibling (control cell line). A reproducible Electric Cell-substrate Impedance Sensing (ECIS) electrical wounding assay was conducted to mimic RPE damage in AMD. First, a robust and reproducible real-time quantitative monitoring over a 25-day period demonstrated the establishment and maturation of RPE layers on microelectrodes. A spatially-controlled RPE layer damage that mimicked cell loss in AMD was then initiated. Post recovery, significant differences in migration rates were found between case and control cell lines. Data analysis and modelling suggested this was due to the lower cell-substrate adhesion of the control cell line. These findings were confirmed using cell adhesion biochemical assays. Moreover, different-sized, individually-addressed square microelectrode arrays with high spatial resolution were designed and fabricated in-house. ECIS wounding assays were performed on these chips to study immortalized RPE migration. Migration rates comparable to those obtained with ECIS circular microelectrodes were determined. The two proposed disease-models-on-a-chip were then used to explore the therapeutic potential of the antioxidant N-Acetyl-Cysteine (NAC) on hiPSC-RPE and HepaRG cell recovery. Addition of 10 mM NAC at the end of a 24h paracetamol challenge caused a slight increase in the measured impedance, suggesting partial cell recovery. On the other hand, no effect on case hiPSC-RPE migration has been observed. More experiments are needed to examine the effect of different NAC concentrations and incubation periods. The therapeutic potential of electrical stimulation has also been explored. A preliminary study to evaluate the effect of electrical stimulation on RPE migration has been conducted. An externally applied direct current electric field (DC EF) of 300 mV/mm was found to direct the migration of the immortalized RPE cell line (hTERT-RPE1) perpendicular to the EF. The cells were also observed to elongate and to realign their long axes perpendicular to the applied EF. The proposed tissue-on-a-chip disease models are powerful platforms for translational studies. The potential of such platforms has been demonstrated through revealing unknown effects of acetaminophen on the liver as well as providing deeper insights into the underlying mechanisms of macular degeneration. Combining stem cell technology with impedance sensing provides a high throughput platform for studying patient-specific diseases and evaluating potential therapies.
4

The development of smart sensors for aquatic water quality monitoring

Alexander, Craig January 2014 (has links)
The focus of this project was to investigate the use of interdigitated electrodes (IDEs) as impedimetric ion-selective chemical sensors for the determination of several important analytes found within a freshwater aquarium. The overall aim of this research was to work towards a prototype sensing device that could eventually be developed into a commercial product for sale to aquarium owners. Polyvinyl chloride and sol-gels containing commercially-available ionophores for four aquarium-significant ions (NH4+, NO2-, NO3- and pH) were prepared and investigated for use within polymeric ion-selective membranes. Three separate IDE transducers were produced using either photolithography or screen-printing microfabrication techniques. A sinusoidal voltage was applied to the IDEs and an LCR meter was used to measure changes in the conductance and capacitance of the ion-selective membrane layer deposited over the electrode digits. Each ionophore, when tested within potentiometric ion-selective electrodes (ISEs), was found to be suitable for further investigation within IDE devices. Sol-gels were investigated as a potential membrane material for a coated wire electrode; however, poor response characteristics were observed. An IDE sensor fabricated in-house using lift-off photolithography and spin-coated with a polymeric membrane was found to produce non-selective responses caused by changes in the conductivity of the test solution. IDE devices with reduced geometric parameters were purchased and coated with a selective polymeric membrane. When the membrane was spin-coated, non-selective responses were observed; therefore, drop-coating of the membrane material was investigated. This initially resulted in an unacceptably long response time; however, this effect was reduced by decreasing the membrane solution viscosity prior to drop-coating. A fully-screen printed carbon IDE device was fabricated by incorporating the ionophore into a support matrix based on a commercial dielectric paste. Matrix interferences to the sensor response were reduced by printing ‘build-up’ layers over the sensing area prior to the ion-selective membrane. Two novel routes for monitoring the water quality of an aquarium, using IDE sensors fabricated by either photolithography or screen-printing, have been demonstrated. Due to the commercial aspect of this project, it is important to consider the final cost of producing these sensors. Both of the techniques used to produce ion-selective sensors require further experimentation to optimise the sensor response, prior to integration within a multi-analyte sensing prototype.
5

GRAPHENE BASED RF/MICROWAVE IMPEDANCE SENSING and Low Loss conductor for RF applications

Iramnaaz, Iramnaaz January 2011 (has links)
No description available.
6

Multi-Frequency and Multi-Sensor Impedance Sensing Platform for Biosensing Applications

Bhatnagar, Purva January 2018 (has links)
No description available.
7

Interdigitated ITO sensor for ECIS monitoring of breast cancer cells / Capteur interdigité en ITO pour le suivi par mesures d'impédance de cellules cancèreuses du sein

Martinez Santamaria, Jaime Andres 05 February 2019 (has links)
Dans la lutte contre le cancer, la médecine personnalisée est une stratégie nécessaire et très prometteuse. En effet, il est primordial de pouvoir tester l'innocuité et l'efficacité de médicaments anticancéreux sur des échantillons provenant du patient lui-même, du fait de la diversité des réponses entre patients. Le but est d'améliorer la performance des soins et d'éviter des traitements inutiles et même parfois nocifs pour le patient. Ainsi, l'exemple de la chimiothérapie illustre parfaitement cette stratégie. Le cout élevé des molécules thérapeutiques, la nocivité de ces molécules et les réponses variées des patients face à une même molécule implique le recours aux tests de ces molécules sur un échantillon provenant du patient lui-même. Il en résulte un intérêt croissant dans le développement de tests simples, robustes et peu couteux permettant l'évaluation de la chimio sensibilité de cellules biologiques issues d'une biopsie. Les problématiques liées à la mise en place de tels tests sont la quantité de cellules disponibles dans une biopsie, la diversité des molécules thérapeutiques à tester et également le choix d'une technique de détection permettant de suivre la cinétique d'action des molécules sur les cellules biologiques. L'une des réponses à la faible quantité de cellules est le développement de tests dans des environnements microfluidiques qui nécessitent donc l'intégration et la miniaturisation d'une technique de détection. La stratégie qui sera étudiée dans cette thèse est l'utilisation de l'impedancemetrie par le biais d'électrodes inter digitées d'Oxyde d'Etain et d'Indium (ITO) pour l'analyse quantitative de l'état de cellules de cancer du sein pour des applications de criblage de médicaments anticancéreux. Ce matériau présente l'avantage d'être transparent permettant ainsi des mesures d'impédance qui pourrait être couplées à des mesures optiques dans un environnement microfluidique. Dans une première partie, nous avons caractérisé et étudié des électrodes inter digitées d'or et d'ITO pour des mesures d'impédance avec des cellules cancéreuses. Cette caractérisation par spectroscopie d'impédance réalisée dans des solutions de milieu de culture en présence et absence de cellules, ont permis de démontrer que la différence de sensibilité entre ces deux matériaux provenait à la fois d'une différence de comportement résistif mais également d'une différence d'impédance interfaciale, dans les deux cas à la défaveur de l'ITO. Après ce constat, nous avons donc poursuivi l'étude afin d'évaluer les capacités de l'ITO pour des mesures de chimio sensibilité de la molécule 5-fluorouracil et également proposé une stratégie pour améliorer la sensibilité de l'ITO tout en conservant sa transparence. La stratégie développée consiste en la modification de la surface de d'électrodes d'ITO avec de l'oxyde d'iridium pour améliorer la sensibilité de l'ITO, tout en gardant sa transparence. Cette approche est intéressante pour pouvoir concevoir un dispositif transparent et facile à coupler avec un système d'observation microscopique dans un environnement microfluidique / In the fight against cancer, personalized medicine is a necessary and very promising strategy. In fact, it is essential to be able to test the safety and effectiveness of anticancer drugs on samples from the patient, due to the diversity of responses between patients. The aim is to improve the performance of health care and avoid unnecessary and sometimes harmful treatments. Thus, chemotherapy perfectly illustrates this strategy. The high cost of therapeutic molecules, the harmfulness of these molecules and the varied responses of patients involve the use of tests with chemotherapeutic molecules on samples coming from cancer patients. This results in a growing interest in the development of simple, robust and inexpensive tests for assessing the chemo sensitivity of biological cells from a biopsy. The problems related to carrying out such tests are the quantity of cells available in a biopsy, the diversity of the therapeutic molecules to be tested and also the choice of a detection technique, able to monitor the kinetics of action of the molecules on the biological cells. One solution to the small amount of cells is to carry out the tests in microfluidic environments which therefore require the integration and miniaturization of a detection technique. The strategy that will be studied in this thesis is the use of electrical impedance with interdigitated electrodes of indium tin oxide (ITO) for the quantitative analysis of the state of breast cancer cells for screening applications of anticancer drugs. This material has the advantage of being transparent allowing impedance measurements that could be coupled to optical measurements in a microfluidic environment. In the first part, we characterized and studied interdigitated electrodes of gold and ITO for impedance measurements with cancer cells. This impedance spectroscopy characterization carried out in culture medium solutions, in the presence and absence of cells, demonstrated that the difference in sensitivity between these two materials comes from a difference in resistive behavior and also from a difference in interfacial impedance, in both cases to the disadvantage of ITO. After this, we continued the study to evaluate the capabilities of ITO for chemosensitivity measurements using the molecule 5 fluorouracil and we suggested a strategy to improve the sensitivity of ITO while maintaining its transparency. The strategy developed consists of modifying the surface of ITO electrodes with iridium oxide to improve the sensitivity of the ITO, while keeping its transparency. This approach is interesting for developing a transparent device and easy to couple with a microscopic observation system in a microfluidic environment
8

Bioimpedance spectroscopy of breast cancer cells: A microsystems approach

Srinivasaraghavan, Vaishnavi 04 November 2015 (has links)
Bioimpedance presents a versatile, label-free means of monitoring biological cells and their responses to physical, chemical and biological stimuli. Breast cancer is the second most common type of cancer among women in the United States. Although significant progress has been made in diagnosis and treatment of this disease, there is a need for robust, easy-to-use technologies that can be used for the identification and discrimination of critical subtypes of breast cancer in biopsies obtained from patients. This dissertation makes contributions in three major areas towards addressing the goal. First, we developed miniaturized bioimpedance sensors using MEMS and microfluidics technology that have the requisite traits for clinical use including reliability, ease-of-use, low-cost and disposability. Here, we designed and fabricated two types of bioimpedance sensors. One was based on electric cell-substrate impedance sensing (ECIS) to monitor cell adhesion based events and the other was a microfluidic device with integrated microelectrodes to examine the biophysical properties of single cells. Second, we examined a panel of triple negative breast cancer (TNBC) cell lines and a hormone therapy resistant model of breast cancer in order to improve our understanding of the bioimpedance spectra of breast cancer subtypes. Third, we explored strategies to improve the sensitivity of the microelectrodes to bioimpedance measurements from breast cancer cells. We investigated nano-scale coatings on the surface of the electrode and geometrical variations in a branched electrode design to accomplish this. This work demonstrates the promise of bioimpedance technologies in monitoring diseased cells and their responses to pharmaceutical agents, and motivates further research in customization of this technique for use in personalized medicine. / Ph. D.

Page generated in 0.063 seconds