• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 7
  • 2
  • 1
  • Tagged with
  • 10
  • 10
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Electro-Disinfection of Municipal Waste Water using Direct Current

Acosta Vega, Julio A 18 December 2014 (has links)
Wastewater treatment has always been a problem to human settlers. Events such as the great stink of London during the summer of 1858 have pushed engineers into developing new technologies to deal with such wastes in effective and safe ways. Research projects like this aim to find ways of improving performance, economics, or environmental friendliness of treatment and disinfection methods. This thesis deals with the effectiveness, mechanisms of action, by-products and side effects of using DC current to disinfect secondary effluent. It is proposed as an alternative to conventional methods, such as chlorination, which are not always environmentally friendly or feasible. It was demonstrated that DC current efficiently kills pathogens. DC properly used achieves disinfection significantly higher than the minimum required by the EPA. Nevertheless disinfection by products such as residual chlorine should be taken into account when considering this technology as an alternative to conventional chlorination.
2

Electrochromic Properties of Iridium Oxide Based Thin Films

Backholm, Jonas January 2008 (has links)
Electrochromic iridium oxide (IrOx) and iridium-tantalum oxide (IrTaOx) thin films were prepared by reactive magnetron sputtering. Composition, density, and structure were determined using Rutherford backscattering spectroscopy, X-ray photoelectron spectroscopy, X-ray diffraction, scanning electron microscopy, transmission electron microscopy, and electron energy loss spectroscopy. The electronic density of states (DOS) and the solid phase chemical diffusion coefficient (D) were determined for hydrogen in IrOx and IrTaOx by potentiostatic intermittent titration technique (PITT), and electrochemical impedance spectroscopy (EIS). The complex refractive indices were determined for colored and bleached IrOx and IrTaOx by inverting transmission and reflectance, measured using spectrophotometry in the 300-2500 nm wavelength range. A very porous structure, with a stoichiometry of IrO2.2, was found for IrOx. It contained ~4 nm sized grains. The IrTaOx had a denser structure built up by ~4 nm sized grains. The composition of IrTaOx was found to vary on a nanometer scale, with an average composition of IrTa1.4O5.6. It was found that DOS can be measured using PITT and EIS in the presence of spontaneous side reactions, even for systems influenced by non-negligible charge transfer kinetics and Ohmic drops. It was found that the measured DOS is 30-50% of the theoretically calculated DOS and that D is in the 10-10 – 10-11 cm2/s range for both materials. The hydrogen diffusion mechanism was described by an anomalous diffusion model, possibly indicating percolation or diffusion paths described by a fractal network. The refractive indices were found to be ~1.3 and ~2 for IrOx and IrTaOx, respectively, and independent of coloration state, whereas the extinction coefficients were found to modulate by ~30% for IrOx and ~50% for IrTaOx, making IrTaOx more favorable for electrochromic applications. A modulation peak was found at ~660 nm for both IrOx and IrTaOx associated with the removal of intraband transitions within the Ir t2g band.
3

Fundamental Aspects of Electrocatalysis at Metal and Metal Oxide Electrodes

Chen, Youjiang January 2011 (has links)
No description available.
4

Interdigitated ITO sensor for ECIS monitoring of breast cancer cells / Capteur interdigité en ITO pour le suivi par mesures d'impédance de cellules cancèreuses du sein

Martinez Santamaria, Jaime Andres 05 February 2019 (has links)
Dans la lutte contre le cancer, la médecine personnalisée est une stratégie nécessaire et très prometteuse. En effet, il est primordial de pouvoir tester l'innocuité et l'efficacité de médicaments anticancéreux sur des échantillons provenant du patient lui-même, du fait de la diversité des réponses entre patients. Le but est d'améliorer la performance des soins et d'éviter des traitements inutiles et même parfois nocifs pour le patient. Ainsi, l'exemple de la chimiothérapie illustre parfaitement cette stratégie. Le cout élevé des molécules thérapeutiques, la nocivité de ces molécules et les réponses variées des patients face à une même molécule implique le recours aux tests de ces molécules sur un échantillon provenant du patient lui-même. Il en résulte un intérêt croissant dans le développement de tests simples, robustes et peu couteux permettant l'évaluation de la chimio sensibilité de cellules biologiques issues d'une biopsie. Les problématiques liées à la mise en place de tels tests sont la quantité de cellules disponibles dans une biopsie, la diversité des molécules thérapeutiques à tester et également le choix d'une technique de détection permettant de suivre la cinétique d'action des molécules sur les cellules biologiques. L'une des réponses à la faible quantité de cellules est le développement de tests dans des environnements microfluidiques qui nécessitent donc l'intégration et la miniaturisation d'une technique de détection. La stratégie qui sera étudiée dans cette thèse est l'utilisation de l'impedancemetrie par le biais d'électrodes inter digitées d'Oxyde d'Etain et d'Indium (ITO) pour l'analyse quantitative de l'état de cellules de cancer du sein pour des applications de criblage de médicaments anticancéreux. Ce matériau présente l'avantage d'être transparent permettant ainsi des mesures d'impédance qui pourrait être couplées à des mesures optiques dans un environnement microfluidique. Dans une première partie, nous avons caractérisé et étudié des électrodes inter digitées d'or et d'ITO pour des mesures d'impédance avec des cellules cancéreuses. Cette caractérisation par spectroscopie d'impédance réalisée dans des solutions de milieu de culture en présence et absence de cellules, ont permis de démontrer que la différence de sensibilité entre ces deux matériaux provenait à la fois d'une différence de comportement résistif mais également d'une différence d'impédance interfaciale, dans les deux cas à la défaveur de l'ITO. Après ce constat, nous avons donc poursuivi l'étude afin d'évaluer les capacités de l'ITO pour des mesures de chimio sensibilité de la molécule 5-fluorouracil et également proposé une stratégie pour améliorer la sensibilité de l'ITO tout en conservant sa transparence. La stratégie développée consiste en la modification de la surface de d'électrodes d'ITO avec de l'oxyde d'iridium pour améliorer la sensibilité de l'ITO, tout en gardant sa transparence. Cette approche est intéressante pour pouvoir concevoir un dispositif transparent et facile à coupler avec un système d'observation microscopique dans un environnement microfluidique / In the fight against cancer, personalized medicine is a necessary and very promising strategy. In fact, it is essential to be able to test the safety and effectiveness of anticancer drugs on samples from the patient, due to the diversity of responses between patients. The aim is to improve the performance of health care and avoid unnecessary and sometimes harmful treatments. Thus, chemotherapy perfectly illustrates this strategy. The high cost of therapeutic molecules, the harmfulness of these molecules and the varied responses of patients involve the use of tests with chemotherapeutic molecules on samples coming from cancer patients. This results in a growing interest in the development of simple, robust and inexpensive tests for assessing the chemo sensitivity of biological cells from a biopsy. The problems related to carrying out such tests are the quantity of cells available in a biopsy, the diversity of the therapeutic molecules to be tested and also the choice of a detection technique, able to monitor the kinetics of action of the molecules on the biological cells. One solution to the small amount of cells is to carry out the tests in microfluidic environments which therefore require the integration and miniaturization of a detection technique. The strategy that will be studied in this thesis is the use of electrical impedance with interdigitated electrodes of indium tin oxide (ITO) for the quantitative analysis of the state of breast cancer cells for screening applications of anticancer drugs. This material has the advantage of being transparent allowing impedance measurements that could be coupled to optical measurements in a microfluidic environment. In the first part, we characterized and studied interdigitated electrodes of gold and ITO for impedance measurements with cancer cells. This impedance spectroscopy characterization carried out in culture medium solutions, in the presence and absence of cells, demonstrated that the difference in sensitivity between these two materials comes from a difference in resistive behavior and also from a difference in interfacial impedance, in both cases to the disadvantage of ITO. After this, we continued the study to evaluate the capabilities of ITO for chemosensitivity measurements using the molecule 5 fluorouracil and we suggested a strategy to improve the sensitivity of ITO while maintaining its transparency. The strategy developed consists of modifying the surface of ITO electrodes with iridium oxide to improve the sensitivity of the ITO, while keeping its transparency. This approach is interesting for developing a transparent device and easy to couple with a microscopic observation system in a microfluidic environment
5

Matériaux pour électrolyseur à membrane électrolyte protonique / Materials for proton exchange membrane water electrolysis

Skulimowska, Anita 27 February 2014 (has links)
Les travaux présentés dans ce mémoire concernent les composants d'assemblages membrane-électrodes (AMEs) pour électrolyseur à membrane échangeuse de protons (PEM – proton exchange membrane) fonctionnant à moyenne température. L'électrolyse de l'eau PEM, alimentée par l'énergie électrique provenant de sources renouvelables, est une voie pour la production efficace et durable d'hydrogène de haute pureté. De nouveaux électrolytes polymère solides (un des principaux éléments de la cellule d'électrolyse) à double conduction, basés sur un réseau semi-interpénétré créé par le polybenzimidazole sulfoné et l'acide polyphosphonique, ont été étudiés. Les membranes perfluorosulfonées (PFSA) à chaîne latérale courte et le composite PFSA-phosphate de zirconium (ZrP) ont également été étudiés. Les matériaux catalytiques de l'anode à base d'oxyde d'iridium ont été préparés par hydrolyse et calcination. L'oxyde d'iridium (IrO2), les oxydes bimétalliques (Ir/Ru) et ternaires (Ir/Ru/Ta) oxydes ont été étudiés par voie électrochimique dans la gamme de températures comprises entre 20 et 120 °C. Les caractérisations physico-chimiques ont confirmé la formation de structures d'oxyde et l'absence de particules de chlorures ou de métal résiduels. On observe une diminution de la tension de cellule, quelle que soit la densité de courant, lorsque la température augmente. Le catalyseur a été déposé sur la membrane, soit par pulvérisation directe ou par transfert en utilisant un support inerte (décalque). Aucune différence significative n'a été observée en appliquant les deux méthodes de dépôt. Les performances s'améliorent lorsque la température augmente pour tous les échantillons. L'assemblage comprenant une membrane de type PFSA, Aquivion®, de masse équivalente 870 meq.g-1 et d'une épaisseur de 120 µm, a montré de meilleures performances pour l'électrolyse de l'eau à 120 °C comparé à l'assemblage comprenant une membrane composite Aquivion® / ZrP, tandis qu'une membrane de type de polybenzimidazole sulfoné à liaison éther, poly-[(1-(4,4'-diphényléther)-5-oxybenzimidazole)-benzimidazole], a montré des performances prometteuses et aucune limitation de transport jusqu'à 2 A.cm-2. Les meilleurs performances ont été observées à 120 °C pour un assemblage préparé par pulvérisation directe de IrO2 sur une membrane Aquivion®; 1,67 V à 2 A.cm-2. / Preparation and investigation of the main components of membrane electrode assemblies (MEAs) for medium temperature proton exchange membrane water electrolysis (PEMWE) are described in this manuscript. Moderate temperature PEMWE, nourished by electrical energy from renewable sources is a practical path to sustainable generation of hydrogen with high purity and efficiency. Novel solid polymer electrolytes (a key component of the electrolysis cell) with double functionality properties, based on highly sulfonated polybenzimidazole creating a semi-interpenetrating network with a polyphosphonic acid, were investigated. A short side chain perfluorosulfonated acid (PFSA) type membrane and PFSA-zirconium phosphate composite membrane were also studied. The anode catalyst materials based on iridium oxide were prepared using the aqueous hydrolysis method followed by calcination. IrO2, some bimetallic (Ir/Ru) and ternary (Ir/Ru/Ta) oxides were electrochemically investigated in a wide range of temperatures (20-120 °C). The physico-chemical characterisation confirmed the formation of oxide structures, absence of residual chloride or metal particles. All catalysts prepared showed decreasing voltage at any given current density with rising the temperature. Catalyst was deposited on the membrane either directly by spray deposition or by decal transfer. No significant difference was observed using both deposition method. The PEMWE performance was increasing with the temperature. The short-side-chain PFSA - Aquivion® ionomer of equivalent weight 870 meq.g-1, of thickness 120 µm, displayed higher water electrolysis performance at 120 °C than a composite membrane of Aquivion® with zirconium phosphate, while a sulfonated ether-linked polybenzimidazole, sulfonated poly-[(1-(4,4'-diphenylether)-5-oxybenzimidazole)-benzimidazole], showed promising performance and no mass transport limitations up to 2 A.cm-2. The lowest cell voltage was observed at 120 °C for an MEA prepared using spray-coating of IrO2 directly on the Aquivion® membrane, 1.67 V at 2 A.cm-2.
6

Synthesis, Physiochemical And Electrochemical Studies On Iridium, Osmium And Graphene Oxide-Based Nanostructures

Kalapu, Chakrapani 10 1900 (has links) (PDF)
Nanoscience dominates almost all areas of science and technology in the 21st century. Nanoparticles are of fundamental interest since they possess unique size dependent properties (optical, electrical, mechanical, chemical, magnetic etc.), which are quite different from the bulk and the atomic state. The research work presented in the thesis is on the preparation, characterization and studies on Ir, Os and graphene oxide-based systems. Interconnected Ir and Os nanochains are prepared under environmentally friendly conditions in aqueous media and subsequently used as substrates for surface enhanced Raman scaterring studies and also as electrocatalysts for oxygen reduction and formaldehyde oxidation. Ir and IrOx nanostructures are prepared using borohydride at different temperatures. The nature of interaction of heme proteins with IrOx is studied using spectroscopic techniques. Electrochemical studies on reduced graphene oxide include sensing of biomolecules with high sensitivity and oxygen reduction reaction (ORR) in aqueous alkaline medium. rGO is also used as support for anchoring Ir nanoparticles and the catalyst is used for the oxidation of benzyl amines to corresponding imines. The thesis is divided in to seven chapters and details are given below. Chapter 1 gives an introduction about the synthetic strategies and properties of metal nanostructures. This is followed by literature survey on Ir, Os and graphene oxide-based systems relevant to the present study. Aim and scope of the present investigation is given at the end. Chapter 2 discusses the experimental procedures and characterization techniques used in the present study. Chapter 3 involves the preparation, characterization and studies on interconnected Ir nanochains. Assemblies of small sized nanoparticles forming network-like structures have attracted enormous interest and different metal nanoassemblies have been reported using different procedures. Ir3+ reduction is kinetically not a very favourable process and hence there are not many attempts to synthesize Ir-based nanostructures. Assemblies of interconnected Ir nanoparticles have been synthesized in the present studies using borohydride as reducing agent and ascorbic acid as capping agent, at high temperatures. Polyfunctional capping molecules such as ascorbic acid and vitamin P play important role for the formation of network- like Ir nanostructures. Optical properties of the networks are probed using UV-Vis spectroscopy and evolution of coupled plasmon of Ir nanochains at 418 nm (figure 1) is observed. The nanochains are used as substrates for SERS studies while the catalytic activity is followed for the reduction of nitroaromatics. Electrocatalytic activity of Ir nanochains is exemplified using oxygen reduction and formaldehyde oxidation. Ir nanochains show better electrocatalytic activities than nanoparticles as shown in figure 2. Figure 1. Time dependent UV-Vis absorption spectra of Ir nanoparticles recorded at various time intervals of (a) 5; (b) 15; (c) 30 and (d) 60 minutes of reduction of Ir3+ using borohydride and the corresponding TEM images. Figure 2. Polarization curves for oxygen reduction on (i) Ir nanochains and (ii) Ir nanoparticles in (A) 0.5 M H2SO4 and (B) 0.1 M KOH at a scan rate of 0.005 V/s. Rotation speed used is 1000 rpm. Chapter 4 discusses the preparation of Ir and IrOx using borohydride. The reaction temperature determines the product. Various physicochemical, microscopic and spectroscopic techniques have been used to understand the evolution of nanostructures. Borohydride reduces Ir3+ at high temperatures to form high surface area foams, while at 25oC, it results in an alkaline environment that helps in the hydrolysis of the Ir precursor to form IrOx nanoparticles. Porous IrOx is formed when Ir foams are annealed at high temperatures. Water oxidation has been demonstrated using IrOx nanoparticles and foams. Biocompatibility of IrOx is used to study the nature of interaction of heme proteins and the formation of bioconjugates using spectroscopic techniques. IrOx forms bioconjugates with substantial changes observed in secondary and tertiary structures of proteins. Chapter 5 explores the synthesis of interconnected ultrafine Os nanoclusters and the nanostructured materials are used as SERS substrates. Os nanochains are prepared under environmentally friendly conditions using polyfunctional molecules like ascorbic acid and vitamin P as both reducing agent and capping agent in aqueous media. Small sized (1-1.5 nm) Os nanoparticles spontaneously self-assemble to form clusters of few tens of nm that in turn self-organize to form branched nanochains of several microns in size. The as-formed nanochains show surface plasmon absorption in the visible region 540 nm which make them active substrates for surface enhanced Raman scattering (SERS) studies. High SERS activity is observed for fluorescent analyte, rhodamine 6G and non-fluorescent analyte, mercaptopyridine, with different laser excitation sources. Efficient energy transfer from fluorescent R6G dye to Os nanochains is observed based on steady state and time resolved fluorescence measurements.Figure 3. (I) Time dependent UV-Vis absorption spectra of Os nanochains recorded at different time intervals of (a) 5; (b) 7; (c) 15; (d) 30 and (e) 60 minutes. Inset shows the TEM images of Os nanochains after 60 minutes of reduction. (II) SERS spectra of 4-MPy adsorbed on Os nanochains from (a) 1 mM; (b) 10 µM and (c) 1 µM solutions using 514 nm laser excitation. Chapter 6 discusses the studies based on reduced graphene oxide. Reduced graphene oxide (rGO) is explored as electrodes for simultaneous determination of dopamine (DA), ascorbic acid (AA) and uric acid (UA) at low concentrations useful in medical diagnostics (figure 4A). It is also used as metal-free electrocatalyst for ORR (figure 4B). The use of rGO as a support for anchoring Ir nanoparticles is probed and subsequently the Ir/rGO is used as catalyst for direct aerobic oxidation of benzyl amine derivatives to corresponding imines. Chapter 7 describes the summary of the work and scope for further studies. Appendix 1 discusses the preparation of different Ir nanostructures using simple galvanic displacement reaction on copper foil while appendix 2 describes the preparation of different sized Ir nanoparticles and their electrocatalytic activity towards oxygen reduction reaction
7

Mécanismes de dégradation des catalyseurs modèles anodiques à base d'iridium dans les électrolyseurs de l'eau PEMWE / Degradation mechanisms of anodic model catalysts in PEM water electrolyzers

Scohy, Marion 11 October 2019 (has links)
Face à la nécessité d’une réduction drastique des émissions de gaz à effet de serre, le déploiement des piles à combustibles est présenté comme une solution d’avenir. La production d’hydrogène décarbonée est un des enjeux futurs pour permettre une transition énergétique efficace. Dans cette optique, l’électrolyseur à membrane échangeuse de proton (PEMWE), combiné aux sources énergétiques renouvelables, est une technologie intéressante. De nombreux défis sont encore à relever pour permettre une commercialisation de cette technologie, en particulier côté anodique. L’oxyde d’iridium, matériau coûteux et très rare, est utilisé à l’anode pour sa capacité à catalyser le dégagement d’oxygène tout en résistant aux conditions acide et oxydante. Il subit néanmoins des dégradations au cours de son utilisation.Dans ce travail, différentes surfaces modèles d’iridium pour le dégagement d’oxygène ont été étudiées pour comprendre les mécanismes mis en jeu lors des premières étapes d’oxydation de la surface et du dégagement d’oxygène. Après caractérisations par spectroscopie d’impédance électrochimique dynamique (DEIS), technique innovante permettant d’analyser les systèmes dynamiques, les relations structure-activité-stabilité lors du dégagement d’oxygène ont été étudiées en comparant des surfaces modèles d’iridium ((111), (210) et (210) nanostructurée). Les résultats obtenus mettent en évidence qu’après quelques heures à haut potentiel (> 1,6 V vs. Electrode Réversible à Hydrogène), ces surfaces, de structures et compositions chimiques initiales différentes, tendent vers le même état. Enfin, l’étude de films minces d’iridium et de nickel@iridium, modélisant des particules cœur@coquille, a montré qu’après dissolution du nickel initialement présent, une couche poreuse active pour le dégagement d’oxygène est formée. Ces résultats sont prometteurs pour la synthèse de catalyseurs à base d’iridium pour le dégagement de dioxygène. / With the need for a drastic reduction of greenhouse gases, the deployment of fuel cells is one of the considered solutions. Decarbonated hydrogen production is subsequently a major challenge to enable an efficient energetic transition. From this perspective, Proton Exchange Membrane Water Electrolyser (PEMWE) is a technology of interest, especially if coupled with renewable energy sources. Key challenges are still to be addressed before commercializing this technology, in particular at the anode. Iridium oxide, a costly and rare material, is implemented in anodic catalytic layers to catalyse the Oxygen Evolution Reaction (OER) while being resistant to harsh acidic and oxidative conditions. It nonetheless undergoes some degradations.In this work, different iridium model surfaces for the OER where studied to understand mechanisms involved during the first oxidations step and oxygen evolution. After characterisations by Dynamic Electrochemical Impedance Spectroscopy (DEIS), an innovative technique used to study dynamic systems, structure-activity-stability relationships towards the OER were studied by comparing iridium model surfaces ((111), (210) and nanostructured (210)). Results showed that after few hours at high potential (> 1.6 V vs. Reversible Hydrogen Electrode)), these surfaces, with different initial chemical compositions and structures, tend to the same state. Finally, iridium and nickel@iridium thin films were studied, to model core@shell particles. Results indicate that the nickel dissolution lead to the formation of a porous layer more active towards the OER. These findings could help to design active iridium catalysts for the OER.
8

Direct Current Block of Peripheral Nerve: Electrode and Waveform Development

Vrabec, Tina L. 27 January 2016 (has links)
No description available.
9

Oxide and Oxide Fluoride Chemistry of Xenon(VIII), Xenon(VI), and Iridium

Goettel, James T. January 2017 (has links)
This Thesis extends our fundamental knowledge of high-oxidation-state chemistry and in particular compounds of Xe(VIII), Xe(VI), and Ir(V). The crystal structure of XeVIIIO4 was obtained and provides important information on this fundamentally interesting endothermic and shock-sensitive compound. Macroscopic amounts of XeO3F2 have been prepared for the first time. Although the low-temperature Raman spectrum of solid XeO3F2 exhibits some frequency shifts and band splittings of the bending modes, the spectrum is similar to the Raman spectrum of the previously reported matrix-isolated compound. The crystal structures of decomposition and byproducts resulting from the syntheses of XeO3F2 have been obtained for [XeF5][HF2]∙XeOF4 and XeF2∙XeO2F2. The solid-state structure of xenon trioxide, XeO3, was reinvestigated by low-temperature single-crystal X-ray diffraction and shown to exhibit polymorphism that is dependent on crystallization conditions. The previously reported α-phase (orthorhombic, P212121) only forms upon evaporation of aqueous HF solutions of XeO3. In contrast, two new phases, β-XeO3 (rhombohedral, R3) and gamma-XeO3 (rhombohedral, R3c) have been obtained by slow evaporation of aqueous solutions of XeO3. The extended structures of all three phases result from Xe=O----Xe bridge interactions among XeO3 molecules that arise from the amphoteric donor-acceptor nature of XeO3. The Xe atom of the trigonal pyramidal XeO3-unit has three Xe---O secondary bonding interactions. The orthorhombic α-phase displays the greatest degree of variation among the contact distances and has a significantly higher density than the rhombohedral phases. The ambient-temperature Raman spectra of solid α- and gamma-XeO3 have also been obtained and assigned for the first time. Xenon trioxide interacts with CH3CN and CH3CH2CN to form O3XeNCCH3, O3Xe(NCCH3)2, O3XeNCCH2CH3, and O3Xe(NCCH2CH3)2. Their low-temperature single-crystal X-ray structures show that the xenon atoms are consistently coordinated to three electron-donor atoms which result in pseudo-octahedral environments around their xenon atoms. The adduct series provides the first examples of a neutral xenon oxide bound to nitrogen bases. Energy-minimized gas-phase geometries and vibrational frequencies were obtained for the model compounds O3Xe(NCCH3)n (n = 1−3) and O3Xe(NCCH3)n∙[O3Xe(NCCH3)2]2 (n = 1, 2). The natural bond orbital (NBO), quantum theory of atoms in molecules (QTAIM), electron localization function (ELF), and molecular electrostatic potential surface (MEPS) analyses were carried out to further probe the nature of the bonding in these adducts. Xenon trioxide forms adducts with the polytopic nitrogen base ligands: hexamine, DABCO, 2,2’-bipyridine, 1,10-phenanthroline, and 4,4’-bipyridine. The adducts were conveniently synthesized in aqueous or CH3CN solutions and are stable at room temperature. The crystal structures of hexamine∙2XeO3, hexamine∙XeO3∙H2O, 2,2’-bipyridine∙XeO3, 1,10-phenanthroline∙XeO3, and 4,4’-bipyridine∙XeO3 have been determined by low-temperature single-crystal X-ray diffraction. The structures consist of XeO3 molecules bridged by the ligands to form extended supramolecular networks with Xe---N bonds which range from 2.634(3) to 2.829(2) Å. Raman spectroscopy was used to characterize and probe the room-temperature stabilities of these adducts. The reaction of 1,4-diazabicyclo[2.2.2]octane (DABCO) with XeO3 in aqueous solutions yields thin, plate-shaped crystals which are severely twinned whereas the reaction of DABCO with XeO3 in the presence of HF forms [DABCOH]2[F2(XeO3)2]∙H2O and [DABCOH2][F][H2F3] which were also characterized by low-temperature X-ray crystallography and Raman spectroscopy. A reversible temperature-dependent phase transition occurred for [DABCOH]2[F2(XeO3)2]∙H2O. The structures of 2,2’-bipy∙XeO3 and 1,10-phen∙XeO3 provide the first examples of noble-gas chelates. The structure of hexamine∙XeO3∙H2O provides the first instance in which a noble-gas centre is coordinated by water. These compounds also represent the first examples of sp2- and sp3-hybridized N---Xe(VI) bonds and are rare examples of noble-gas compounds that are air-stable at ambient temperatures. Adducts between XeO3 and three molar equivalents of the nitrogen bases, pyridine and 4-dimethylaminopyridine (4-DMAP), have been synthesized and characterized. The crystal structures of (C5H5N)3XeO3, {(CH3)2)2NC5H4N}3XeO3∙H2O have been determined by low-temperature single-crystal X-ray diffraction. The reaction of hydrolyzed XeF6 in acetonitrile with pyridine or 4-DMAP afforded [C5H5NH]4[HF2]2[F2(XeO3)2] and [(CH3)2NC5H4NH][HF2]∙XeO3 which were characterized by low-temperature X-ray crystallography and Raman spectroscopy. The structures contain pyridinium cations that are hydrogen bonded to the fluoride coordinated to XeO3 and can be viewed as pyridinium fluoroxenates. The structure of (CH3)2NC5H5N∙XeO3∙H2O contains a water molecule that is hydrogen bonded to two oxygen atoms of two adjacent XeO3 molecules. The pyridine adduct, (C5H5N)3XeO3, was found to be relatively insensitive to shock, whereas the 4-DMAP adduct was extremely shock sensitive. The number of isolable compounds which contain different noble-gas−element bonds is limited for xenon and even more so for krypton. Examples of Xe−Cl bonds are rare and prior to this work, no definitive evidence for a Xe−Br bonded compound existed. The syntheses, isolation, and characterization of the first compounds to contain Xe−Br bonds ([N(C2H5)4]3[Br3(XeO3)3] and [N(CH3)4]4[Br4(XeO3)4]) and their chlorine analogues are described. The bromo- and chloroxenate salts are stable in the atmosphere at room temperature and were characterized in the solid state by Raman spectroscopy, low-temperature single-crystal X-ray diffraction, and in the gas phase by quantum-chemical calculations. They are the only known examples of cage anions that contain a noble-gas element. The Xe−Br and Xe−Cl bonds are weakly covalent and can be viewed as σ-hole interactions, similar to halogen bonds. Xenon trioxide reacts with alkali metal fluorides and chlorides to form a variety of room-temperature stable fluoro- and chloroxenate salts. The reaction of XeO3 with various ratios of KF in water afforded three new compounds. The crystal structures of α-K[F(XeO3)2], β-K[F(XeO3)2], α-K[FXeO3], K2[F2(XeO3)] have been determined. The reaction of XeO3 with aqueous CsF resulted in Cs3[F3(XeO3)2]. The XeVI−F bond lengths range from 2.3520(18) to 2.5927(17) Å. No stable product was isolated when [N(CH3)4]F was the fluoride source, but in the presence of HF, crystals of [N(CH3)4]3[HF2]2[H2F3]∙2XeO3 were obtained. The reaction of KCl with XeO3 in equimolar amounts resulted in the formation of K[ClXeO3] whereas the analogous reaction with CsCl yielded Cs3[Cl3(XeO3)4]. Attempts to synthesize Xe–P and Xe–S bonded compounds were unsuccessful and instead resulted in adducts between XeO3 and O-bases such as the phosphine oxide adduct, {(C6H5)3PO}2XeO3 and dimethylsulfoxide (DMSO) adduct {(CH3)2SO}3(XeO3)2. Although DMSO was found to be resistant to oxidation by XeO3, no significant Xe---S bonding interactions were observed. Acetone was found to be highly resistant to oxidation by XeO3 and forms {(CH3)2CO}3XeO3 at low temperatures. The reaction of pyridine-N-oxide yielded large crystals of (C5H5NO)3(XeO3)2 in which the structure contains short chains in contrast with ((CH3)2SO)3(XeO3)2 whose structure consists of discrete dimers. The reaction of XeO3 with the oxidatively resistant main-group oxide anion source, [N(CH3)4][OTeF5] in CH3CN solvent afforded [N(CH3)4][F5TeOXeO3(CH3CN)2]. Xenon trioxide reacts with potassium hydroxide to form the previously known K4[XeO6]∙2XeO3 salt which was characterized by Raman spectroscopy and low-temperature X-ray crystallography. The reaction of MgO with XeO3 yielded single crystals of [Mg(OH2)6]4[XeO6(XeO3)12O2]∙12H2O, which also contains perxenate-XeO3 interactions. Alkali metal carbonates also incorporate XeO3 into their crystal lattices. Raman spectra of M2[CO3(XeO3)n]∙xH2O (M = Na, K, Rb) were recorded and contain intense bands assigned to the XeO3 stretching modes and very weak bands assigned to the [CO3]2− modes. The reaction of dilute aqueous solutions of XeO3 with RbOH and atmospheric CO2 afforded single crystals of Rb2[CO3(XeO3)2]∙2H2O which were characterized by low-temperature X-ray crystallography. Attempts to incorporate XeO3 into other polyatomic anion salts such as KMnO4, NaClO3, and NaNO3 were unsuccessful. The reaction of IrO2 with XeF6 in aHF provided [Xe2F11][IrF6], whereas the reaction of IrO2 with KrF2 with ClF3 in anhydrous HF solvent provided [ClO2][Ir2F11] and [ClO2][(μ-OIrF4)3]. The structure of [(μ-OIrF4)3]− consists of a six membered Ir3O3 ring with four terminal fluorine atoms on each Ir atom. It was also found that ClF3 forms an adduct with [Xe2F11][HF2] in which the structural parameters of ClF3 are very similar to that of solid ClF3. The [ClO2][Ir2F11] salt provides the first structural information on the [Ir2F11]− anion and the [(μ-OIrF4)3]− anion represents the first isolated iridium oxide fluoride species. / Thesis / Doctor of Philosophy (PhD) / Xenon is a noble-gas element which is located in the far right-hand column of the periodic table and was previously thought to be chemically unreactive and incapable of forming compounds. In 1962, it was shown that xenon reacts with the most reactive compounds, such as elemental fluorine, but the resulting xenon compounds are themselves highly reactive. This Thesis extends the chemistry of some of the most unstable and chemically reactive xenon compounds that are currently known. One such compound, xenon trioxide, tends to easily detonate unless carefully handled. Methods of stabilizing xenon trioxide were developed and its behaviour with compounds which resulted in formation of new xenon compounds was studied. The molecular structures of these compounds were investigated in the solid with particular emphases on their chemical bonding. Iridium is one of the most chemically resistant metals known. Highly reactive xenon and krypton compounds were used synthesize new iridium compounds.
10

Investigation of electrochemical properties and performance of stimulation/sensing electrodes for pacemaker applications

Norlin, Anna January 2005 (has links)
People suffering from certain types of arrhythmia may benefit from the implantation of a cardiac pacemaker. Pacemakers artificially stimulate the heart by applying short electrical pulses to the cardiac tissue to restore and maintain a steady heart rhythm. By adjusting the pulse delivery rate the heart is stimulated to beat at desired pace. The stimulation pulses are transferred from the pacemaker to the heart via an electrode, which is implanted into the cardiac tissue. Additionally, the electrode must also sense the cardiac response and transfer those signals back to the electronics in the pacemaker for processing. The communication between the electrode and the tissue takes place on the electrode/electrolyte (tissue) interface. This interface serves as the contact point where the electronic current in the electrode is converted to ionic currents capable to operate in the body. The stimulation/sensing signals are transferred across the interface via three electrochemical mechanisms: i) non-faradaic charging/discharging of the electrochemical double layer, ii) reversible and iii) irreversible faradaic reactions. It is necessary to study the contribution of each mechanism to the total charge transferred to evaluate the pacing/sensing performance of the pacemaker electrode. In this thesis, the electrochemical properties and performance of stimulation/sensing electrodes for pacemaker applications have been investigated by electrochemical impedance spectroscopy, cyclic voltammetry and transient electrochemical techniques. All measurements were performed in synthetic body fluid with buffer capacity. Complementary surface analysis was performed with scanning electron microscopy, energy dispersive spectroscopy and X-ray photoelectron spectroscopy. The results reveal different interfacial behaviour and stability for electrode materials such as Pt, TiN, porous carbon, conducting oxides (RuO2 and IrO2 and mixed oxides) and porous Nb2O5 oxide. The influence of the charge/discharge rate on the electrode characteristics also has been evaluated. Although the rough and porous electrodes provide a high interfacial capacitance, the maximum capacitance cannot be fully employed at high charge/discharge rates because only a small part of the effective surface area is accessible. The benefit of pseudo-capacitive material properties on charge delivery was observed. However, these materials suffer similar limitations at high charge/discharge rate and, hence, are only utilising the surface bound pseudo-capacitive sites. Porous Nb2O5 electrodes were investigated to study the performance of capacitor electrodes. These electrodes predominantly deliver the charge via reversible non-faradaic mechanisms and hence do not produce irreversible by-products. They can deliver very high potential pulses while maintaining high impedance and, thus, charge lost by faradaic currents are kept low. By producing Nb oxide by plasma electrolysis oxidation a porous surface structure is obtained which has the potential to provide a biocompatible interface for cell adherence and growth. This thesis covers a multidisciplinary area. In an attempt to connect diverse fields, such as electrophysiology, materials science and electrochemistry, the first chapters have been attributed to explaining fundamental aspects of the respective fields. This thesis also reviews the current opinion of pacing and sensing theory, with special focus on some areas where detailed explanation is needed for the fundamental nature of electrostimulation/sensing. / QC 20101014

Page generated in 0.0329 seconds