Spelling suggestions: "subject:"impedance tuned"" "subject:"impedance tunel""
1 |
Novel Impedance Tuner, Phase Shifter, And Vector Modulators Using Rf Mems TechnologyUnlu, Mehmet 01 March 2009 (has links) (PDF)
This thesis presents the theory, design, fabrication, and measurement results of novel reconfigurable impedance tuner, phase shifter, and vector modulators using the RF MEMS technology. The presented circuits are based on triple stub topology, and it is shown both theoretically and experimentally in this thesis that it is possible to control the insertion phase and amplitude of the input signal simultaneously using this topology. The presented circuits are implemented using an in-house, surface micromachining fabrication process developed at METU, namely METU RF MEMS Fabrication Process, which is implemented using six masks on quartz substrates. The RF MEMS impedance tuner is designed to operate in 6-20 GHz frequency band, and it covers the Smith Chart with 1331 impedance points. The measurement results of 729 impedance points of the fabricated impedance tuner show that a wide Smith Chart coverage is obtained in the entire band. The RF MEMS phase shifter is designed to cover 0-360 degrees range 10 degree steps at 15 GHz center frequency. The measurement results of the fabricated phase shifter show that the average phase error is 1.7 degrees, the average insertion loss is -3.1 dB, and the average return loss is -19.3 dB for the measured 21 phase states. The phase shifter can also work up to 30 GHz and 40 GHz with average insertion losses of -5 dB and -8 dB, respectively. The designed RF MEMS vector modulator operates in 22.5-27.5 GHz band, and it has 3 amplitude and 8 phase states. The measurement results of the fabricated vector modulator show that the amplitude error is 0.5 dB, the phase error is 4 degrees, and the return loss is -15 dB on average among the 24 measured states at each of 22.5, 25, and 27.5 GHz frequencies.
|
2 |
Design of Broadband GaN 0.15μm RF Switches and X-band Reconfigurable Impedance TunerKhan, Iftekhar January 2016 (has links)
Radio-frequency (RF) switches are widely used in electrical systems, telecommunications, and wireless applications. In RF systems, it is often desirable to change the signal path effectively, by us-ing couplers, duplexers, and RF switches for signal division and combining. Typically, in modern RF systems, the RF switch is mostly capitalized in order to reduce the RF footprint but with efficient switch characteristics. A simple method to reduce transceiver space requirement is to integrate RF switches with the frontend module on a single chip.
Recent advances in Gallium Nitride (GaN) technology allows RF designers to design faster, smaller, and efficient components using this technology. With high data rates in demand for wireless communication systems, wideband characteristics are needed in modern systems [1]. Therefore, it is desirable to design wideband circuits; such as, mixers, amplifiers, and switches. In this work, a comprehensive study of NRC GaN150 HEMT is conducted to design broadband RF switches. Single pole and double pole switch topologies operating at 1-12 GHz are designed to evaluate GaN 0.15μm RF switches. The main objectives were to design compact sized switches, while having high power handling, low insertion loss, high isolation and high return loss. Additionally, a transmit-receive switch is designed for integration into a frontend module and further fabricated to operate at 10 GHz.
There are many applications of RF switches in an RF transceiver, one of which is an impedance tuner. Impedance tuner are attractive for many applications where mobile devices are used for wireless communications. As mobile technology continues to evolve, they are designed to be com-pact, leaving minimal space for the antenna. Consequently, the radiating element is often electrically small and sensitive to near-field coupling requiring tuning. Matching networks aim to tune matching conditions; for example, loading effects due to human hand [2]. For such situations, specialized matching networks can be designed to account for specific loading environmental effects. However, for mobile systems, the environment is unknown; thereby, yielding unpredictable antenna loading, especially for electrically small antennas that have rapidly changing real and imaginary impedance. As a result, it is necessary to design a reconfigurable impedance-matching network to account for possible load impedances. In this work, a 16-bit reconfigurable impedance tuner design comprising of passive microwave components and NRC GaN 0.15μm FET operating at X-band is presented to evaluate its performance for integration with the frontend module on a single chip to reduce cost and increase efficiency of the system.
|
3 |
Low Power Reconfigurable Microwave Circuts Using RF MEMS Switches for Wireless SystemsZheng, Guizhen 31 May 2005 (has links)
This dissertation presents the research on several different projects. The first project is a via-less CPW RF probe pad to microstrip transition; The second, the third, and the fourth one are reconfigurable microwave circuits using RF MEMS switches: an X-band reconfigurable bandstop filter for wireless RF frontends, an X-band reconfigurable impedance tuner for a class-E high efficiency power amplifier using RF MEMS switches, and a reconfigurable self-similar antenna using RF MEMS switches. The first project was developed in order to facilitate the on-wafer measurement for the second and the third project, since both of them are microstrip transmission line based microwave circuits. A thorough study of the via-less CPW RF probe pad to microstrip transition on silicon substrates was performed and general design rules are derived to provide design guidelines. This research work is then expanded to W-band via-less transition up to 110 GHz. The second project is to develop a low power reconfigurable monolithic bandstop filter operating at 8, 10, 13, and 15 GHz with cantilever beam capacitive MEMS switches. The filter contains microstrip lines and radial stubs that provide different reactances at different frequencies. By electrically actuating different MEMS switches, the different
reactances from different radial stubs connecting to these switches will be selected, thus, the filter will resonate at different frequencies. The third project is to develop a monolithic reconfigurable impedance tuner at 10 GHz with the cantilever DC contact MEMS switch. The impedance tuner is a two port network based on a 3bit-3bit digital design, and uses 6 radial shunt stubs that can be selected via integrated DC contact MEMS switches. By selecting different states of the switches, there will be a total of 2^6 = 64 states, which means 64 different impedances will be generated at the output port of the tuner. This will provide a sufficient tuning range for the output port of the power amplifier to maximize the power efficiency. The last project is to integrate the DC contact RF MEMS switches with self-similar planar antennas, to provide a reconfigurable antenna system that radiates with similar patterns over a wide range of frequencies.
|
4 |
Novel Closed-Loop Matching Network Topology for Reconfigurable Antenna ApplicationsSmith, Nathanael J. 21 May 2014 (has links)
No description available.
|
Page generated in 0.0692 seconds