• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 1
  • 1
  • Tagged with
  • 5
  • 5
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Electrical impedance of normal and ischemic myocardium. Role on the genesis of ST segment changes and ventricular arrhythmias

Warren Rodríguez, Mark 13 September 1999 (has links)
Las propiedades eléctricas pasivas del tejido cardiaco tienen un papel importante en determinar la propagación del impulso eléctrico a través del miocardio normal y patológico. La medida de la impedancia eléctrica miocárdica es usada para evaluar el papel de los cambios de la propiedades eléctricas pasivas cardiacas en la arritmogénesis y en los cambios del segmento ST durante la isquemia miocárdica. La isquemia aguda aumenta la resistividad y el ángulo de fase al cabo de aproximadamente 30 minutos de oclusión coronaria; ambas magnitudes alcanzan un plató después de 1 hora de isquemia. La cicatriz del infarto de miocardio se caracteriza por tener una resistividad aproximadamente un 50% menor que el tejido normal, y un ángulo de fase cercano a cero. Además, ambas magnitudes muestran una falta de dependencia en frecuencia en el rango de 1 kHz a 1MHz. La incidencia máxima de arritmias ventriculares de la fase Ib coincide temporalmente con el incremento abrupto de resistividad y ángulo de fase tisular. Además, el precondicionamiento miocárdico retrasa la pendiente máxima del incremento de ambas magnitudes paralelamente con el pico de arritmias de la fase Ib. En cambio, el aumento de la resistividad miocárdica no se asocia con una disminución de la elevación del segmento ST epicárdico. Sin embargo, la baja resistividad del tejido infartado es responsable de favorecer la transmisión de pulsos de corriente aplicados a través del tejido necrótico, y esto reafirma la hipótesis de que durante la isquemia preinfarto, la elevación del segmento ST de electrodos epicárdicos en tejido infartado carente de células viables, es por transmisión eléctrica pasiva de corrientes de lesión generadas en la zona limítrofe del tejido isquémico y normal. Finalmente, la medida de la impedancia eléctrica con un catéter percutáneo intracavitario de contacto permite diferenciar áreas de infarto transmural del tejido normal gracias a su espectro de impedancia particular. / The passive electrical properties of cardiac tissue play a major role in determining the propagation of the electrical impulse across the myocardium in both normal and pathologic conditions. Measurement of whole tissue electrical impedance is used to asses the role of the changes in cardiac passive electrical properties in arrhythmogenesis and ST segment changes during myocardial ischemia. Acute ischemia increases both resistivity and phase angle after approximately 30 minutes of coronary occlusion, and both reach plateau values after 1 hour of ischemia. Healed infarcted myocardium is characterized by an approximately 50% lower than normal resistivity and close to zero phase angle value. Furthermore, both variables depict a lack of frequency response in the 1 kHz to 1 MHz range. The peak incidence of phase Ib ventricular arrhythmias temporally coincides with the sharp increase of tissue resistivity and phase angle. Furthermore, myocardial preconditioning delays the maximum slope of the increase of both magnitudes as well as the peak of phase Ib arrhythmias in a parallel manner. In contrast, a rise in tissue resistivity is not accompanied by a decrease in epicardial ST segment elevation. However, the low resistivity of the infarcted tissue is responsible for the enhanced transmission of current pulses applied across the necrotic myocardium, which supports the hypothesis that during periinfarction ischemia the ST segment elevation measured in epicardial electrodes overlying infarcted tissue devoid of viable cells, is by passive electrical transmission of injury currents that are generated in the border of the ischemic and normal tissue. Finally, measurement of myocardial impedance with a contact intracavitary percutaneous catheter permits differentiation of areas of transmural infarction from normal tissue by their particular impedance spectrum.
2

Caracterización de tejidos cardíacos mediante métodos mínimamente invasivos y no invasivos basados en espectroscopia de impedancia eléctrica

Salazar Muñoz, Yolocuauhtli 15 October 2004 (has links)
El objetivo de este trabajo es estudiar la viabilidad de utilizar, en la práctica clínica, métodos de medida mínimamente invasivos y no invasivos para contribuir al diagnóstico del infarto de miocardio y del rechazo de transplante, a partir de la medida de espectroscopia de impedancia eléctrica (EIE) obteniendo un estimador cuantitativo que nos permita conocer el estado del tejido de miocardio.Para conseguir este objetivo, la tesis se ha dividido en tres fases dependiendo del grado de invasividad del método de medida empleado. La primera fase consistió en obtener las características eléctricas pasivas del tejido de miocardio, en tres estados: sano, isquemia aguda y cicatriz, a partir de medidas invasivas no transmurales, método a 4 electrodos con electrodos de aguja, y medidas invasivas transmurales, método a 3 electrodos con un catéter intracavitario. Estableciendo las diferencias entre cada estado del tejido de miocardio para cada uno de los métodos de medida. A partir de estas medidas, y conociendo que era viable utilizar un método transmural para diferenciar el estado del tejido de miocardio, pasamos a la segunda fase. En esta fase construimos un modelo 3D de elementos finitos (EF) de una sección del tórax, que nos predijera la magnitud de los cambios que se podían esperar debido a la presencia de una cicatriz o de una isquemia aguda, además del efecto de movimiento y desplazamiento del catéter dentro de la cavidad. Así mismo, establecer las especificaciones del equipo de medida a utilizar. Para validar las simulaciones se realizaron experimentos in vitro tanto con solución salina-agar y tejido de miocardio. Una aplicación en la práctica clínica fue realizar medidas de EIE en un grupo de pacientes sanos y otro grupo de pacientes con transplante de corazón, para establecer la viabilidad de la técnica en la detección del rechazo de transplante agudo. En la tercera fase, se ha utilizado el modelo 3D de EF del tórax para optimizar la posición de 4 electrodos superficiales para la detección de una isquemia aguda. El modelo se simuló con una inyección de corriente detección de tensión adyacente-adyacente para una configuración de 16 electrodos que permitiera obtener las matrices de transimpedancia correspondientes y aplicar un algoritmo de optimización.A partir de todos los resultados obtenidos, podemos establecer que las medidas de impedancia eléctrica, y principalmente su fase, es una herramienta que permite monitorizar eventos fisiológicos y caracterizar estados fisiopatológicos del tejido como la isquemia aguda, la cicatriz e incluso el rechazo en corazones transplantados. Esta caracterización es más fácil con medidas invasivas pero también es posible mediante medidas mínimamente invasivas utilizando catéteres intracavitarios siempre que se realice una calibración adecuada que permita reducir los artefactos presentes en las medidas. El estudio con modelos matemáticos de las técnicas no invasivas ha demostrado que, con cuatro electrodos superficiales, la caracterización del tejido con isquemia aguda requeriría unas prestaciones que no son factibles con la tecnología disponible actualmente. Por lo tanto, las líneas de trabajo futuro deben enfocarse en diseñar un sistema cuya resolución y precisión permita realizar medidas de caracterización y monitorización del estado del tejido de miocardio on line. Y de esta forma tener una técnica atractiva en el ambiente hospitalario para monitorizar el tejido en la evolución del infarto de miocardio, en los procesos de ablación y en las biopsias endomiocárdicas de transplante de corazón. / The aim of this work is to study the viability to use minimally invasive and non invasive measurement methods, in the clinical environment, to contribute to the diagnosis of myocardium infarct and transplant rejection. We have used electrical impedance spectroscopy (EIS) measurements in order to obtain a quantitative estimator to know the state of the myocardium tissue. In order to achieve this objective, the thesis has been divided in three phases depending on the degree of invasivity of the measurement method used.The first stage consists on obtaining the passive electrical characteristics of the myocardium tissue, in three states: healthy, acute ischemia and scar. The invasive measurements are non transmural and transmural. The non transmural measurements are done with the 4 electrode method using needle electrodes, and transmural measurements are done with the 3 electrode method using an intracavitary catheter. It has been established in this stage the differences between each tissue state of the myocardium and for each measurement method. The second stage started with the viability of the transmural method results of the first stage to differentiate the myocardium tissue state. In this stage we constructed a 3D finite element model of a thorax section. This model was used to predict the changes in magnitude that could be expected due to the presence of an acute ischemia or scar, including the effect of movement and displacement of the catheter within the cavity. Also, it has been established the specifications of the measuring equipment to use. In order to validate the simulations, in vitro experiments with saline solution-agar and myocardium tissue were made. It has been also done measurements in a group of healthy patients and another group of patients with heart transplant, in a clinical environment, to establish the viability of the technique in the detection of the rejection of acute transplant. In the third stage, the 3D thorax model has been used to optimize the position of 4 superficial electrodes for the detection of acute ischemia. The model was simulated with a current-injection and voltage-detection with the adjacent-adjacent technique, for a configuration of 16 electrodes that allowed to obtain the transimpedance matrices and to apply an optimization algorithm. From all the obtained results, we can establish that the measurements of electrical impedance, and mainly its phase angle, is an estimator for monitoring physiological events and to characterize physiopatological states of the tissue as acute ischemia, scar and even the rejection in transplanted hearts. This characterization is easier with invasive measurements but also it is possible by means of minimally invasive measurements using intracavitary catheters whenever a suitable calibration is made to reduce the artefacts present in the measurements. The study with mathematical models of the noninvasive techniques has demonstrated that, with four superficial electrodes, the characterization of the acute ischemia tissue would require performances that are not feasible with the technology available at this moment. Therefore, the lines of future work must focus on designing a system whose resolution and precision allows us to make measurements to characterize and monitor the myocardium tissue state on line. It would be possible to have an attractive technique, in the hospital environment, to monitor the evolution of the tissue in a myocardium infarct, in ablation processes and in endomyocardial biopsies of heart transplant.
3

Detecció d'estructures estàtiques en el cos humà usant mètodes multifreqüència en Tomografia de impedància elèctrica

Riu Costa, Pere Joan 29 November 1991 (has links)
Se analiza la obtención de imágenes que representan la estructura de secciones del cuerpo humano por medio de la medida de impedancia eléctrica. El método propuesto se basa en el comportamiento frecuencial de la conductividad y permitividad de los tejidos biológicos.Para la obtención de las estructuras estáticas, y la diferenciación de los tejidos, se opta por la medida de impedancia eléctrica a diversas frecuencias. En una primera parte se demuestra la viabilidad del método propuesto basándose en el estudio del comportamiento frecuencial de diversos tejidos del cuerpo humano. Así mismo, se han utilizado modelos de elementos finitos para comprobar la validez de los métodos de reconstrucción de imágenes y la posibilidad de detectar estructuras internas.En una segunda parte se analizan los requerimientos para la obtención de las medidas y se presenta el diseño de un equipo para la obtención de las imágenes, tanto de la parte de adquisición como de reconstrucción de imágenes.Por ultimo, se presentan los resultados obtenidos en modelos físicos de elementos discretos, en disoluciones salinas y en medidas realizadas en humanos, mostrándose imágenes de secciones del abdomen a diversas frecuencias.
4

Evaluación mediante el Método de Espectroscopia de Impedancia Eléctrica (EIE), del proceso de geopolimerización de pastas, morteros y hormigones en conglomerantes activados alcalinamente

Calvo Muñoz, Clara 09 June 2017 (has links)
ABSTRACT The use of concrete as a building material is a very widespread practice throughout the world thanks to its high mechanical strength, versatility and low cost. Nevertheless, the production of one of its components, the Portland cement, involves a high environmental impact. It is not a recent or an exclusive problem of our country, but it is a global issue associated with the growth of population, among others. Through this approach and the fact that the consumption of cement will continue to increase, the scientific community is studying alternative materials, such as calcium sulfoaluminate cements, belitic cements, and alkali activated cements, also known as geopolymers. The latter acquire chemical and physical properties and many researchers consider them to be the third generation of building materials after lime and Portland cement. Materials made from Portland cement have distinctive properties such as mechanical strength and durability. These properties are related to the pore structure within the matrix. This structure depends on the pore volume, the size distribution, the connectivity and the percolation of the pores. These parameters can be determined by different methods, whose results vary depending on the technique used. There are different types of with a diameter based classification. Among them there are two main type, gel pores and capillary pores. An important aspect related to the porous microstructure that also affects the durability of the mortar or concrete matrix is the ionic transport; for this reason, there are non-destructive techniques such as electrical methods and Electrical Impedance Spectroscopy (EIS) for the characterization of this porous microstructure. In the current Doctoral Thesis, Electrical Impedance Spectroscopy (EIS) has been used in mortar and concrete of Portland cement and alkali activated mortars, to describe in detail its evolution in time by means of electrical parameters, from an Equivalent Electric Circuit (EEC) and to be able to relate the two types of porosity. In addition, the equivalent electrical circuit, which represents the electrical conductivity of mortars and concretes from more than a hundred days of curing, has been determined. The results show the variations produced in the hydration and geopolymerization process, and as well as they allow the separation of the components of electrical conductivity related to gel pores, capillary pores and the interface between them. Generally, two relaxations are obtained at medium and high frequency, in both mortars and concretes. The electrical resistivity is measured in direct current and it is related to the hydration of the cement and the process of geopolymerization of alkali activated materials. Moreover, this resistivity has been tried to correlate with the values of the mechanical resistance to compression and with its microstructural properties, obtained from tests by scanning electron microscopy (SEM), thermogravimetric analysis (TG) and Mercury Porosimetry techniques. Thus, in this Doctoral Thesis it was possible to develop a distinctive method of mortars and concretes, independently of the binder employed, either Portland cement or geopolymer matrixes, through the same type of electrical circuit. / RESUMEN La utilización del hormigón como material de construcción es una práctica muy extendida a lo largo de todo el mundo gracias a su gran resistencia mecánica, versatilidad y coste relativamente bajo. No obstante, la producción de uno de sus componentes, el cemento Portland, conlleva un alto impacto ambiental. No es un problema reciente ni exclusivo de nuestro país, sino que se trata de un asunto global asociado, entre otros aspectos, al crecimiento de la población. Tras este planteamiento y el hecho de que el consumo de cemento va a continuar aumentando, la comunidad científica está estudiando materiales alternativos, como pueden ser los cementos de sulfoaluminato de calcio, cementos belíticos, y los cementos activados alcalinamente, también conocidos como geopolímeros. Estos últimos adquieren propiedades químicas y físicas tales, que se consideran por muchos investigadores, la tercera generación de materiales de construcción tras la cal y el cemento Portland. Los materiales fabricados a partir del cemento Portland tienen unas propiedades características como son la resistencia mecánica y la durabilidad. Estas dos propiedades están relacionadas con la estructura de poros que se encuentra dentro de la matriz. Esta estructura depende del volumen de poros, de la distribución de tamaños, de la conectividad y de la percolación de los mismos. Estos parámetros pueden determinarse por diferentes métodos, cuyos resultados varían dependiendo de la técnica empleada. Existen diferentes tipos de poros cuya clasificación se basa en su diámetro, entre ellos se caracterizan dos tipos, los poros tipo gel y los poros capilares. Un aspecto importante relacionado con la microestructura porosa que también afecta a la durabilidad de la matriz de mortero u hormigón es el transporte iónico; por este motivo, para la caracterización de esa microestructura porosa existen técnicas de tipo no destructivo como son los métodos eléctricos y la Espectroscopía de Impedancia Eléctrica (EIE). En esta Tesis Doctoral, se ha utilizado La Espectroscopía de Impedancia Eléctrica (EIE) en morteros y hormigones de cemento Portland y morteros activados alcalinamente, para caracterizar su evolución en el tiempo por medio de unos parámetros eléctricos, a partir de un circuito eléctrico equivalente (CEE) y poder relacionar así los dos tipos de porosidad. Además, se ha determinado el circuito eléctrico equivalente, que representa la conductividad eléctrica de los morteros y hormigones desde el día 2 hasta más de 100 días de curado, mostrando las variaciones producidas en el proceso de hidratación y geopolimerización, y permitiendo separar los componentes de la conductividad eléctrica relacionados con los poros tipo gel, los poros capilares y la interfase entre éstos. Se obtienen, en general, dos relajaciones, a media y alta frecuencia, tanto en morteros como en hormigón. Se mide la resistividad eléctrica en corriente continua y se trata de relacionar con la hidratación del cemento y el proceso de geopolimerización de los materiales activados alcalinamente. Además, dicha resistividad se ha tratado de correlacionar con los valores de la resistencia mecánica a compresión y con sus propiedades microestructurales, obtenidas a partir de ensayos con microscopía electrónica de barrido (SEM), termogravimetría (TG) y Porosimetría de mercurio. De este modo, en esta Tesis Doctoral ha sido posible desarrollar un método de caracterización, de morteros y hormigones, independientemente del conglomerante empleado, ya sea cemento Portland o matrices geopoliméricas, mediante un mismo tipo de circuito eléctrico. / RESUM La utilització del formigó com a material de construcció és una pràctica molt estesa al llarg de tothom gràcies a la seua gran resistència mecànica, versatilitat I cost relativament baix. No obstant això, la producció d'un dels seus components, el ciment Portland, comporta un alt impacte ambiental. No és un problema recent ni exclusiu del nostre país, sinó que es tracta d'un assumpte global associat, entre altres aspects, al creixement de la població. Després d'aquest plantejament i el fet que el consum del ciment continuarà augmentant, la comunitat científica està estudiant materials alternatius, com poden ser els ciments de sulfoaluminat de calci, ciments belítics, I els ciments activats alcalinament, també coneguts com a geopolímers. Aquests últims adquireixen propietats químiques I físiques tals, que es consideren per molts investigadors, la tercera generació de materials de construcció després de la calç I el ciment Portland. Els materials fabricats a partir del ciment Portland tenen unes propietats característiques com són la resistència mecànica i la durabilitat. Aquestes dues propietats estan relacionades amb l'estructura de porus que es troba dins de la matriu. Aquesta estructura depén del volum de porus, de la distribució de grandàries, de la connectivitat i de la percolació d'aquests. Tals paràmetres poden determinar-se per diferents mètodes, els resultats dels quals varien depenent de la tècnica empleada. Existeixen diferents tipus de porus la classificació dels quals es basa en el seu diàmetre, entre ells es caracteritzen dos tipus, els porus de tipus gel i els porus capil·lars. Un aspecte important relacionat amb la microestructura porosa i que també afecta la durabilitat de la matriu de morter o formigó és el transport iònic; per aquest motiu, per a la caracterització d'aqueixa microestructura porosa existeixen tècniques de tipus no destructiu com són els mètodes elèctrics i l'Espectroscòpia d'Impedància Elèctrica (EIE). En aquesta Tesi Doctoral, s'ha utilitzat l'Espectroscòpia d'Impedància Elèctrica (EIE) en morters i formigons de ciment Portland i morters activats alcalinament, per a caracteritzar la seua evolució en el temps per mitjà d'uns paràmetres elèctrics, a partir d'un ircuit elèctric equivalent (CEE) i poder relacionar així els dos tipus de porositat. A més, s'ha determinat el circuit elèctric equivalent, que representa la conductivitat elèctrica dels morters i formigons des del dia 2 fins a més de 100 dies de guarit, mostrant les variacions produïdes en el procés d'hidratació i geopolimerització, i permetent separar els components de la conductivitat elèctrica relacionats amb els porus tipus gel, els porus capil·lars i la interfase entre aquests. S'obtenen, en general, dues relaxacions, a mitjana i alta freqüència, tant en morters com en formigó. Es mesura la resistivitat elèctrica en corrent continu i es tracta de relacionar amb la hidratació del ciment i el procés de geopolimerització dels materials activats alcalinament. A més, aquesta resistivitat s'ha tractat de correlacionar amb els valors de la resistència mecànica a compressió i amb les seues propietats microestructurals, obtingudes a partir d'assajos amb les tècniques de microscòpia electrònica d'escombratge (SEM), termogravimetria (TG) i Porosimetría de mercuri. D'aquesta manera, en aquesta Tesi Doctoral ha sigut possible desenvolupar un mètode de caracterització, de morters i formigons, independentment del conglomerant emprat, siga ciment Portland o matrius geopolimèriques, mitjançant un mateix tipus de circuit elèctric. / Calvo Muñoz, C. (2017). Evaluación mediante el Método de Espectroscopia de Impedancia Eléctrica (EIE), del proceso de geopolimerización de pastas, morteros y hormigones en conglomerantes activados alcalinamente [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/82601 / TESIS
5

Procesamiento de señales de tomografía de impedancia eléctrica para el estudio de la actividad cerebral

Fernández Corazza, Mariano January 2015 (has links)
La tomografía de impedancia eléctrica (EIT) permite estimar la conductividad eléctrica interna de un cuerpo. Consiste en aplicar una corriente eléctrica sobre su frontera y medir el potencial eléctrico resultante mediante un arreglo de sensores. Es considerada como una potencial herramienta de diagnóstico médico, caracterizada principalmente por su portabilidad y relativo bajo costo. Si bien se encuentra aún en etapa de desarrollo, está comenzando a ser utilizada en centros de salud para la caracterización del aparato cardio-respiratorio y existe un creciente interés en su aplicación a las neurociencias. Por ejemplo, es posible utilizar la EIT para construir modelos virtuales de la cabeza más precisos mediante la estimación de la conductividad eléctrica de los principales tejidos de la cabeza como un conjunto de parámetros relativamente pequeño, modalidad denominada EIT paramétrico. También se puede utilizar la EIT para generar un mapa de la distribución de conductividad eléctrica interna de un objeto, llamado problema de reconstrucción en EIT. Los cambios de la conductividad eléctrica en la cabeza pueden estar asociados a la actividad neuronal, a focos epilépticos, a accidentes cerebro-vasculares o a tumores. Ambas modalidades de EIT requieren la resolución del problema directo (PD), que consiste en el cálculo de la distribución de potencial eléctrico en el objeto originada por la inyección de corriente sobre su superficie, suponiendo que la conductividad interna es conocida. La estimulación de corriente continua transcraneal (tDCS) es físicamente muy similar a la EIT, pero la corriente eléctrica es aplicada sobre el cuero cabelludo de modo de alterar la tasa de disparos de poblaciones de neuronas en una región de interés. Es una potencial alternativa al empleo de psicofármacos para tratar desórdenes como epilepsia o depresiones. En esta tesis se desarrollan y analizan nuevos métodos para distintos problemas de EIT, centrándose mayormente en aplicaciones a la cabeza humana, y de tDCS. En primer lugar, se describen soluciones analíticas y numéricas para el PD en EIT, estas últimas basadas en el método de los elementos finitos. Luego, se desarrolla un nuevo procedimiento para resolver el PD con bajo costo computacional basado en la formulación del PD en electroencefalografía (EEG). Se propone un nuevo método para determinar la forma de onda de la fuente de corriente que permite desafectar la actividad propia del cerebro con un bajo número de muestras temporales. En EIT paramétrico, se utiliza la cota de Cramér-Rao (CRB) para determinar pares de electrodos convenientes para la inyección de corriente y para analizar límites teóricos en la estimación de las conductividades del cráneo y del cuero cabelludo, modelizándolos como tejidos isótropos y anisótropos. A su vez, se propone el estimador de máxima verosimilitud (MLE) como herramienta para realizar las estimaciones. El MLE se aplica a mediciones simuladas y reales de EIT mostrando un desempeño muy cercano a los límites teóricos. Para el problema de reconstrucción en EIT se adapta el algoritmo sLORETA, muy utilizado en el problema de localización de fuentes de actividad neuronal en EEG. Además, se lo modifica levemente para incorporar la regularización espacial de Laplace. Por otro lado, se introduce la utilización de filtros espaciales adaptivos para localizar cambios de conductividad de pequeño tamaño y estimar su variación temporal. Los resultados muestran mejoras en sesgo y resolución, en comparación con algoritmos de reconstrucción típicos en EIT. Estas mejoras son potencialmente ventajosas en la detección de accidentes cerebro-vasculares y en la localización indirecta de fuentes de actividad neuronal. En tDCS, se desarrolla un nuevo algoritmo para la determinación de patrones de inyección de corriente basado en el principio de reciprocidad y que considera restricciones de seguridad y de hardware. Los resultados obtenidos a partir de simulaciones muestran que el desempeño de dicho algoritmo es comparable al desempeño de algoritmos de optimización tradicionales cuyas soluciones implicarían un equipamiento comparativamente más complejo y costoso. Los métodos desarrollados en la tesis son comparados con métodos pre-existentes y validados a través de simulaciones numéricas por computadora, mediciones sobre maquetas experimentales (ó fantomas) y, de acuerdo con las posibilidades experimentales y respetando los principios de la bioética, mediciones reales sobre humanos. / Electrical impedance tomography (EIT) is a technique to estimate the electrical conductivity of an object. It consists in the application of an electric current on its boundary and the measurement of the resulting electric potential with a sensor array. In clinical practise, it is considered as a potential diagnostic tool characterized by its portability and relatively low cost. While it is still in a development stage, it is starting to be used in health centers to characterize the cardio-respiratory system. In turn, there is an increasing interest of EIT in neuroscience. For example, EIT can be used to estimate the electrical conductivity of the main tissues of the head as a set of a relatively low number of parameters, which is known as bounded or parametric EIT. This is useful for several medical imaging techniques that require realistic and accurate virtual models of the head. EIT can also be used to generate a map of the internal distribution of the electrical conductivity, known as the reconstruction problem. Tracking conductivity changes inside the head is of great interest as they may be related to neuronal activity, epileptic foci, acute stroke, or tumors. Both modalities of EIT require the solution of the EIT forward problem (FP), i.e., the computation of the electric potential distribution due to current injection on the scalp assuming that the electrical conductivity is known. The transcranial direct current stimulation (tDCS) is another technique which is physically very similar to EIT. It consists in injecting a small electric current in a convenient way such that it stimulates specific neuronal populations, increasing or decreasing their firing rate. It is considered as an alternative to psychoactive drugs in the treatment of brain disorders such as epilepsy or depression. This thesis describes the development and analysis of new methods for EIT FP, parametric EIT, reconstruction in EIT, and tDCS, focusing primarily (although not exclusively) in applications to human head. We first describe analytical and numerical approaches for the EIT FP, where the numerical approach is based on the finite element method. Then, we develop a new procedure to solve the EIT FP based on the electroencephalography (EEG) FP formulation, which results in computational advantages. We propose a new method to determine the waveform of the electric current source such that the neuronal activity of the brain can be neglected with the smallest possible number of time samples. In parametric EIT, we use the Cramér-Rao bound (CRB) to determine convenient electrode pairs for the current injection and theoretical limits in the estimation of the electrical conductivity of the main tissues of the head, which we model as isotropic and anisotropic. We propose the maximum likelihood estimator (MLE) to estimate these conductivities and we test it with simulated and real EIT measurements, showing that the MLE performs close to the CRB. We adapt the sLORETA algorithm to the reconstruction problem in EIT. This algorithm is being widely used in the source localization problem in EEG. We also slightly modify it to include the Laplace smoothing prior in the solution. Likewise, we introduce the use of adaptive spatial filters in the localization of conductivity changes and the estimation of its time courses from EIT measurements. The results show improvements over typical EIT algorithms. These improvements may benefit the early detection of acute strokes and the localization of neuronal activity using EIT. In tDCS, we develop a new algorithm to determine convenient current injection patterns. It is based on the reciprocity principle and considers hardware and safety constraints. Our simulation results show that this method performs similarly to other commonly used algorithms that require more complex and costly equipments. The methods we develop and study in this thesis are compared with pre-existing methods and are validated through numerical simulations, measurements on phantoms and, according to the experimental possibilities and bioethical principles, humans.

Page generated in 0.0679 seconds