• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Modeling Tree Species Distribution and Dynamics Under a Changing Climate, Natural Disturbances, and Harvest Alternatives in the Southern United States

Sui, Zhen 14 August 2015 (has links)
Forests in the southern United States with diverse forest ownership entities are facing threats associated with climate change and natural disturbances. This study represented the relationship between climate and species dominance, predicted future species distribution probability under a changing climate, and projected forest dynamics under ownership-based management regimes. Correlative statistics and mechanistic modeling approaches are implemented. Temporal scale includes the recent past 40 years and the future 60 years; spatial scale downscaled from southern United States to the coastal region of the northern Gulf of Mexico. In the southern United States, dominance of four major pine species experienced shifts from 1970 to 2000; quantile regression models built on the relationships among pine dominance and climatic variables can be used to predict future southern pine dominance. Furthermore, multiple climate envelope models (CEMs) were constructed for nineteen native and one invasive tree species (Chinese tallow, Triadica sebifera) to predict species establishment probabilities (SEPs) on the various land types from 2010 to 2070. CEMs achieved both predictive consistency and ecological conformity in estimating SEPs. Chinese tallow was predicted to have the highest invasionability in longleaf/slash pine and oak/gum/cypress forests during the next 60 years. Forest dynamics, in the coastal region, was projected by linking CEMs and forest landscape model (LANDIS) to evaluate ownership-based management regimes under climate change and natural disturbances. The dominance of forest species will diminish due to climate change and natural disturbances at both spatial scales—in the coastal region and non-industrial private forest (NIPF). No management on NIPF land was predicted to substantially increase the ratio of occupancy area between pines and oaks, but moderate and intensive management regimes were not significantly different. Pines are expected to be more resistant than oaks by maintaining stable age structures, which matched the forest inventory records. Overall, this study projected a future of southern forests on climate-species relationship, invasion risks, and forest community dynamics under multiple scenarios in the United States. Such knowledge could assist forest managers and landowners in foreseeing the future and making effective management prescriptions to mitigate potential threats.
2

The use of tree layer to assess impacts of coal mining on biodiversity in Mukomawabani Area, Mutale Municipality South Africa

Tshilande, Tshilisanani 01 February 2016 (has links)
MSc (Botany) / Department of Botany
3

Ethnobotany, Pharmacology, and Metabolomics of Antidiabetic Plants used by the Eeyou Istchee Cree, Lukomir Highlanders, and Q’eqchi’ Maya

Ferrier, Jonathan 15 January 2014 (has links)
A study was undertaken of plants used for treatment of diabetic symptoms by traditional healers of the Eeyou Istchee Cree (Canada), Lukomir Highlanders (Bosnia & Herzegovina), and Q’eqchi’ Maya (Belize). All antidiabetic plants were ranked by syndromic importance value (SIV) based on 15 symptoms, all of which were recognized by the Cree and Maya and 8 by the Highlanders. The Cree used only 18 species, the Highlanders 41, and the Maya 150, numbers which reflect the diversity of flora in their region. Vaccinium (Ericaceae) was one of the few genera in all three regions and the only consensus genus between the Cree and Highlander study sites. The Q’eqchi’ Maya ethnobotany did not present any cross-cultural consensus genera with Cree or Highlander medicinal plants, perhaps due to major biogeographic differences. In ethnopharmacological studies, Vaccinium species and Q’eqchi’ antidiabetic plants were tested in an assay relevant to diabetes, the advanced glycation endproduct (AGE) inhibition assay. Boreal and tropical Vaccinium species were potent inhibitors of AGEs and demonstrated concentration dependent inhibition, with a half maximal inhibitory concentration (IC50) range of 5.93–100 µg/mL. Phenolic content ranged from 80.3 to 201 µg/mL in boreal samples and from 1470 to 2170 µg/mL in tropical samples. Tropical species have a greater phenolic content and AGE inhibition. Seven Q’eqchi’ antidiabetic plant species were tested and all plant extracts showed AGE-inhibition. The IC50s ranged from 40.8 to 733 µg/mL, and the most active was Tynanthus guatemalensis Donn.. Tynanthus guatemalensis IC50 was about fives times greater (less active) than the mean ± SE IC50 reported for six tropical Vaccinium species of Vaccinium (8.77 ± 0.79 μg/mL). The highest consensus and most active Maya antidiabetic plant, Tynanthus guatemalensis Donn. Sm. was discovered to be an important plant recorded in archeological artifacts from the Late Classic Maya period (~750 CE). Ancient Maya used a cross shaped sign (k’an glyph) as a decorative element on Late Classic polychrome vessels and murals. The sign was believed to be the xylem template for a plant used as a flavouring in cacao drinks. However, the plant was incorrectly identified in the literature as Pimenta dioica (L.) Merr. (common name: Allspice) based on a common name and aromatic plant quality – not from a botanical voucher specimen. Pimenta dioica wood does not have a cross shape visible in the xylem but a unique character visible after a cross section of T. guatemalensis, is the xylem's cross shape organization. Wood of T. guatemalensis' also has an "allspice" aroma. Tynanthus guatemalensis is most likely the true botanical template behind the ancient Maya k’an glyph and this finding would show the continuity of use of this medicinal plant from ancient to modern times. Vaccinium was selected for an in depth phytochemical analysis using modern metabolomic methods. Nuclear magnetic resonance (1H NMR) was used to evaluate leaf extract spectra to provide information on (1) the taxonomic identity and (2) quantities of bioactive metabolites across multiple sites. Spectra clearly differentiated leaf samples of V. angustifolium, V. boreale, V. corymbosum, V. macrocarpon, V. myrtilloides, V. myrtillus, V. ovalifolium, and V. uliginosum according to generic, subgeneric, specific, phenotypic circumscriptions. Quantification of chlorogenic acid and hyperoside were replicated with a method that is highly reproducible across multiple sites with different NMR equipment. This methodology provides an important new approach to taxonomy and quality control for plants and natural health products.
4

Ethnobotany, Pharmacology, and Metabolomics of Antidiabetic Plants used by the Eeyou Istchee Cree, Lukomir Highlanders, and Q’eqchi’ Maya

Ferrier, Jonathan January 2014 (has links)
A study was undertaken of plants used for treatment of diabetic symptoms by traditional healers of the Eeyou Istchee Cree (Canada), Lukomir Highlanders (Bosnia & Herzegovina), and Q’eqchi’ Maya (Belize). All antidiabetic plants were ranked by syndromic importance value (SIV) based on 15 symptoms, all of which were recognized by the Cree and Maya and 8 by the Highlanders. The Cree used only 18 species, the Highlanders 41, and the Maya 150, numbers which reflect the diversity of flora in their region. Vaccinium (Ericaceae) was one of the few genera in all three regions and the only consensus genus between the Cree and Highlander study sites. The Q’eqchi’ Maya ethnobotany did not present any cross-cultural consensus genera with Cree or Highlander medicinal plants, perhaps due to major biogeographic differences. In ethnopharmacological studies, Vaccinium species and Q’eqchi’ antidiabetic plants were tested in an assay relevant to diabetes, the advanced glycation endproduct (AGE) inhibition assay. Boreal and tropical Vaccinium species were potent inhibitors of AGEs and demonstrated concentration dependent inhibition, with a half maximal inhibitory concentration (IC50) range of 5.93–100 µg/mL. Phenolic content ranged from 80.3 to 201 µg/mL in boreal samples and from 1470 to 2170 µg/mL in tropical samples. Tropical species have a greater phenolic content and AGE inhibition. Seven Q’eqchi’ antidiabetic plant species were tested and all plant extracts showed AGE-inhibition. The IC50s ranged from 40.8 to 733 µg/mL, and the most active was Tynanthus guatemalensis Donn.. Tynanthus guatemalensis IC50 was about fives times greater (less active) than the mean ± SE IC50 reported for six tropical Vaccinium species of Vaccinium (8.77 ± 0.79 μg/mL). The highest consensus and most active Maya antidiabetic plant, Tynanthus guatemalensis Donn. Sm. was discovered to be an important plant recorded in archeological artifacts from the Late Classic Maya period (~750 CE). Ancient Maya used a cross shaped sign (k’an glyph) as a decorative element on Late Classic polychrome vessels and murals. The sign was believed to be the xylem template for a plant used as a flavouring in cacao drinks. However, the plant was incorrectly identified in the literature as Pimenta dioica (L.) Merr. (common name: Allspice) based on a common name and aromatic plant quality – not from a botanical voucher specimen. Pimenta dioica wood does not have a cross shape visible in the xylem but a unique character visible after a cross section of T. guatemalensis, is the xylem's cross shape organization. Wood of T. guatemalensis' also has an "allspice" aroma. Tynanthus guatemalensis is most likely the true botanical template behind the ancient Maya k’an glyph and this finding would show the continuity of use of this medicinal plant from ancient to modern times. Vaccinium was selected for an in depth phytochemical analysis using modern metabolomic methods. Nuclear magnetic resonance (1H NMR) was used to evaluate leaf extract spectra to provide information on (1) the taxonomic identity and (2) quantities of bioactive metabolites across multiple sites. Spectra clearly differentiated leaf samples of V. angustifolium, V. boreale, V. corymbosum, V. macrocarpon, V. myrtilloides, V. myrtillus, V. ovalifolium, and V. uliginosum according to generic, subgeneric, specific, phenotypic circumscriptions. Quantification of chlorogenic acid and hyperoside were replicated with a method that is highly reproducible across multiple sites with different NMR equipment. This methodology provides an important new approach to taxonomy and quality control for plants and natural health products.

Page generated in 0.0426 seconds