Spelling suggestions: "subject:"importing"" "subject:"importin""
1 |
New Insights into the Roles of Human DNA Damage Checkpoint Protein ATR in the Regulation of Nucleotide Excision Repair and DNA Damage-Induced Cell DeathLi, Zhengke 01 December 2013 (has links) (PDF)
Integrity of the human genome is frequently threatened by endogenous and exogenous DNA damaging reagents that may lead to genome instability and cancer. Cells have evolved multiple mechanisms to repair DNA damage or to eliminate the damaged cells beyond repair and to prevent diverse diseases. Among these are ataxia telangiectasia and Rad3-related (ATR)-mediated DNA damage checkpoint and nucleotide excision repair (NER) that are the major pathways by which cells handle ultraviolet C (UV-C)- or other exogenous genotoxin-induced bulky DNA damage. However, it is unclear how these 2 pathways may be coordinated. In this study we show that ATR physically interacts with NER factor xeroderma pigmentosum group A (XPA) where an ATR phosphorylation site on serine 196 is located. Phosphorylation of XPA on serine 196 is required for repair of UV-induced DNA damage. In addition, a K188A point mutation of XPA that disrupts the ATR-XPA interaction inhibits the UV-induced XPA phosphorylation and DNA repair. Moreover, we show that depletion of p53, a downstream checkpoint of ATR, and inhibition of p53 transcriptional activities reduced the UV-induced XPA import. Furthermore, we found that the ATR-directed XPA nuclear import happens primarily in the S phase of the cell cycle. In effort to determine the mechanism involved in the XPA nuclear import, we found that, in addition to the nuclear localization signal (NLS) of XPA, importin-α4 is required for the UV-induced XPA nuclear import in an ATR-dependent manner. These data suggest that NER could be regulated by the ATR-dependent checkpoint via modulation of XPA phosphorylation and nuclear import. In a separate study we show that, upon UV damage, cytoplasmic ATR translocates to mitochondria, blocks the recruitment of proapoptotic Bcl-2–associated X (Bax) protein to mitochondria and prevents the loss of mitochondrial membrane potential (ΔΨ) and apoptosis. Bax-depletion reduces the effect of ATR on ΔΨ. Remarkably, the cytoplasmic ATR exhibits no checkpoint kinase activity, a hallmark function of nuclear ATR. Silencing of ATR’s kinase activity failed to affect Bax relocalization to mitochondria. These results reveal a novel checkpoint-independent antiapoptotic function of ATR at mitochondria in the cellular response to DNA damage.
|
2 |
The function of Nup358 in nucleocytoplasmic transport / Die Funktion von Nup358 im nukleocytoplasmatischen TransportWälde, Sarah 23 August 2010 (has links)
No description available.
|
3 |
Le rôle des importines dans le ciblage à la membrane nucléaire interne de la glycoprotéine M de l'herpès simplex de type 1Vandal, Catherine 11 1900 (has links)
La glycoprotéine M (gM) est une protéine virale transmembranaire qui est conservée dans la famille des Herpesviridae. Malgré son rôle non essentiel in vitro chez la plupart des virus de la sous-famille des Alphaherpesvirinae, dont l’herpès simplex de type 1 (VHS-1), gM est impliquée à plusieurs étapes de leur cycle viral et sa déplétion entraine une diminution de la production virale. Pour effectuer ses diverses fonctions, gM est ciblée dynamiquement à plusieurs compartiments cellulaires au cours de l’infection, dont le noyau, le réseau trans-Golgi et la membrane plasmique. Chez le VHS-1, gM est la première glycoprotéine détectée aux membranes nucléaires, et ce, dès 4 heures après le début de l’infection. Des expériences effectuées précédemment dans notre laboratoire ont démontré que la localisation de gM au noyau à 4hpi est un processus actif, viral-dépendant et spécifique qui succède sa traduction au réticulum endoplasmique. Or, sa fonction au noyau n’est toujours pas élucidée, ni le mécanisme lui permettant d’atteindre ce compartiment tôt durant l’infection. D’ailleurs, aucun des partenaires d’interaction connus de gM n’a été identifié comme participant à ce ciblage, soulevant des questions quant au mécanisme utilisé par la glycoprotéine virale pour atteindre le noyau. Notre hypothèse est que gM emprunte le transport nucléocytoplasmique de la cellule pour être activement ciblée à la membrane nucléaire interne par l’intermédiaire des importines.
Afin d’étudier le rôle des importines dans la localisation de gM tôt dans l’infection, chaque importine a été déplétée par ARN interférent dans des cellules 143B. À la suite d’une infection de 4h, la localisation de gM a été déterminée par microscopie confocale suivie d’analyses qualitatives en 2D et en 3D. Les résultats obtenus suggèrent que les importines ne participent pas significativement au ciblage de gM aux membranes nucléaires à cette étape de l’infection. Ces observations ouvrent la porte à d’autres mécanismes de transport qui devront être étudiés afin de mieux comprendre le ciblage de gM à ce compartiment et, éventuellement, y déterminer son ou ses rôles dans le cycle viral de l’herpès. / Glycoprotein M (gM) is a viral transmembrane protein that is conserved in the Herpesviridae family. Despite its non-essential role in vitro in most viruses of the Alphaherpesvirinae subfamily, including herpes simplex virus type 1 (HSV-1), gM is involved at several stages of their viral cycle and its depletion leads to a decrease in viral production. To perform its various functions, gM is dynamically targeted to several cellular compartments during infection, including the nucleus, the trans-Golgi Network and the plasma membrane. In HSV-1, gM is the first glycoprotein detected at nuclear membranes as early as 4 hours after the onset of infection. Previous experiments conducted in our laboratory have shown that the localization of gM to the nucleus at 4hpi is an active, viral-dependent and specific process that follows its translation at the endoplasmic reticulum. However, its function at the nucleus is still not elucidated, nor is the mechanism by which it reaches this compartment early during infection. Moreover, none of gM's known interacting partners have been identified as participants in this targeting, raising questions about the mechanism used by the viral glycoprotein. Our hypothesis is that gM takes advantage of the nucleocytoplasmic transport of the cell to be actively targeted to the inner nuclear membrane via importins.
In order to study the role of the importins in the localization of gM early in the infection, each importin was depleted by interfering RNA in 143B cells. After a 4-hour infection, gM localization was determined by confocal microscopy followed by 2D and 3D qualitative analysis. The results obtained from these experiments suggest that importins do not significantly participate in the targeting of gM to nuclear membranes at 4hpi. These observations open the door to other transport mechanisms that will need to be studied in order to better understand the targeting of gM to this compartment and to eventually determine its role(s) in the herpes viral cycle.
|
Page generated in 0.0595 seconds