1 |
Non-uniform Interstitial Loading in Cardiac Microstructure During Impulse PropagationRoberts, Sarah F. January 2009 (has links)
<p>Impulse propagation in cardiac muscle is determined not only by the excitable properties of the myocyte membrane, but also by the gross and fine structure of cardiac muscle. Ionic diffusion pathways are defined by the muscle's interconnected myocytes and interweaving interstitial spaces. Resistive variations arising from spatial changes in tissue structure, including geometry, composition and electrical properties have a significant impact on the success or failure of impulse propagation. Although much as been learned about the impact of discrete resistive architecture of the intracellular space, the role of the interstitial space in the spread of electrical activity is less well understood or appreciated at the microscopic scale. </p><p>The interstitial space, or interstitium, occupies from 20-25% of the total heart volume. </p><p>The structural and material composition of the interstitial space is both complex and </p><p>heterogeneous, encompassing non-myocyte cell structures and a conglomeration of </p><p>extracellular matrix proteins. The spatial distribution of the interstitium can vary from confined spaces between abutting myocytes and tightly packed cardiac fibers to large gaps between cardiac bundles and sheets</p><p>This work presents a discrete multidomain formulation that describes the three-dimensional ionic diffusion pathways between connected myocytes within a variable interstitial physiology and morphology. Unlike classically used continuous and discontinuous models of impulse propagation, the intracellular and extracellular spaces are represented as spatially distinct volumes with dynamic and static boundary conditions that electrically couple neighboring spaces to form the electrically cooperative tissue model. The discrete multidomain model provides a flexible platform to simulate impulse propagation at the microscopic scale within a three-dimensional context. The three-dimensional description of the interstitial space that </p><p>encompasses a single cell improves the capability of the model to realistically investigate the impact of the discontinuous and electrotonic inhomogeneities of the myocardium's interstitium.</p><p>Under the discrete multidomain representation, a non-uniformly described interstitium </p><p>capturing the passive properties of the intravascular space or variable distribution and </p><p>composition of the extracellular space that encompasses a cardiac fiber creates an </p><p>electrotonic load perpendicular to the direction of the propagating wavefront. During </p><p>longitudinal propagation along a cardiac fiber, results demonstrate waveshape </p><p>alterations due to variations in loads experienced radially that would have been otherwise masked in traditional model descriptions. Findings present a mechanism for eliminating myocyte membrane participation in impulse propagation, as the result of decreased loading experienced radially from a non-uniformly resistive extracellular space. Ultimately, conduction velocity increases by decreasing the "effective" surface-to-volume ratio, as theoretically hypothesized to occur in the conducting Purkinje tissue.</p> / Dissertation
|
2 |
Eine computermodellgestützte Analyse der elektrophysiologischen Effekte von Gap-Junction-Lateralisierung und zellulärer Hypertrophie in kardialem Gewebe / A simulation study of the electrophysiological effects of gap junction lateralisation and cellular hypertrophy in cardiac tissueSeidel, Thomas 08 December 2011 (has links) (PDF)
Die vorliegende Dissertation befasst sich mit Entstehungsmechanismen kardialer Arrhythmien
auf der Grundlage pathologisch veränderten Myokards. Es wurde eine systematische
Analyse der elektrophysiologischen Veränderungen, die als Folge von Gap-Junction-
Lateralisierung und zellulärer Hypertrophie auftreten, durchgeführt. Die Analyse beruht auf
einem mathematischen Computermodell, das zur Simulation der Aktionspotentialausbreitung
innerhalb einer Einzelzellschicht humaner ventrikulärer Kardiomyozyten entwickelt wurde.
Ausgehend von bestehenden Einzelzellmodellen wurde ein räumlich und zeitlich hoch aufgelöstes
Multizellmodell generiert und in der Programmiersprache Object Pascal implementiert.
Nach Validierung des Modells wurde es zur gezielten, an experimentellen Daten orientierten
Manipulation geometrischer Eigenschaften der Zellen (Länge, Durchmesser) und des Zellverbandes
(Anordnung der Zellen untereinander) sowie der Gap-Junction-Verteilung genutzt.
Die Analyse der elektrophysiologischen Effekte im Vergleich zur Kontrolle fand sowohl unter
Normalbedingungen als auch unter Bedingungen, die pathologischen Veränderungen entsprechen
(Entkopplung der Gap-Junctions, verringerte Aktivität des schnellen Natriumkanals,
erhöhte Inhomogenität), statt. Es zeigte sich, dass ein größerer Zelldurchmesser bzw. erhöhte
laterale Gap-Junction-Leitfähigkeit (Simulation von kardialer Hypertrophie bzw. Connexin-
Lateralisierung) die Entstehungswahrscheinlichkeit eines unidirektionalen Leitungsblocks
erhöhte. Die Erregungsausbreitungsgeschwindigkeit in hypertrophierten Zellen war zudem
weniger stabil als in normalen Zellen. Beide Effekte gehören zu den Hauptursachen der Entstehung
und Aufrechterhaltung ventrikulärer Arrhythmien. Die Ergebnisse der Arbeit erklären
somit Ursachen des erhöhten Arrhythmierisikos in pathologisch veränderten und hypertrophierten
Herzen und liefern eine theoretische Grundlage für zukünftige Studien.
|
3 |
Eine computermodellgestützte Analyse der elektrophysiologischen Effekte von Gap-Junction-Lateralisierung und zellulärer Hypertrophie in kardialem GewebeSeidel, Thomas 01 November 2011 (has links)
Die vorliegende Dissertation befasst sich mit Entstehungsmechanismen kardialer Arrhythmien
auf der Grundlage pathologisch veränderten Myokards. Es wurde eine systematische
Analyse der elektrophysiologischen Veränderungen, die als Folge von Gap-Junction-
Lateralisierung und zellulärer Hypertrophie auftreten, durchgeführt. Die Analyse beruht auf
einem mathematischen Computermodell, das zur Simulation der Aktionspotentialausbreitung
innerhalb einer Einzelzellschicht humaner ventrikulärer Kardiomyozyten entwickelt wurde.
Ausgehend von bestehenden Einzelzellmodellen wurde ein räumlich und zeitlich hoch aufgelöstes
Multizellmodell generiert und in der Programmiersprache Object Pascal implementiert.
Nach Validierung des Modells wurde es zur gezielten, an experimentellen Daten orientierten
Manipulation geometrischer Eigenschaften der Zellen (Länge, Durchmesser) und des Zellverbandes
(Anordnung der Zellen untereinander) sowie der Gap-Junction-Verteilung genutzt.
Die Analyse der elektrophysiologischen Effekte im Vergleich zur Kontrolle fand sowohl unter
Normalbedingungen als auch unter Bedingungen, die pathologischen Veränderungen entsprechen
(Entkopplung der Gap-Junctions, verringerte Aktivität des schnellen Natriumkanals,
erhöhte Inhomogenität), statt. Es zeigte sich, dass ein größerer Zelldurchmesser bzw. erhöhte
laterale Gap-Junction-Leitfähigkeit (Simulation von kardialer Hypertrophie bzw. Connexin-
Lateralisierung) die Entstehungswahrscheinlichkeit eines unidirektionalen Leitungsblocks
erhöhte. Die Erregungsausbreitungsgeschwindigkeit in hypertrophierten Zellen war zudem
weniger stabil als in normalen Zellen. Beide Effekte gehören zu den Hauptursachen der Entstehung
und Aufrechterhaltung ventrikulärer Arrhythmien. Die Ergebnisse der Arbeit erklären
somit Ursachen des erhöhten Arrhythmierisikos in pathologisch veränderten und hypertrophierten
Herzen und liefern eine theoretische Grundlage für zukünftige Studien.
|
Page generated in 0.103 seconds