• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 3
  • 2
  • Tagged with
  • 8
  • 8
  • 6
  • 6
  • 6
  • 6
  • 6
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Technisch orientierte Modellierung der Erregungsausbreitung in neuronalen Systemen

Schulze, Rainer W. 12 November 2012 (has links) (PDF)
Die Modellierung natürlicher Neuronenpopulationen stellt den Versuch dar, komplizierte Wechselwirkungen und Ereignisabhängigkeiten in biologischen Systemen quantitativ erfassen zu wollen. Widersprüchlich erscheint dabei die Tatsache, daß ein einzelnes Neuron in einer Population ohne Signifikanz ist, daß sich die gesamte Population aber aus einer Vielzahl derartiger Neuronen zusammensetzt und eine, technischen Systemen überlegene funktionelle Vielfalt besitzt /ZUR 92/, /HOL 93/. Ergo setzt sich die Gesamtleistung eines Systems nicht aus der Summe der Leistungen seiner Komponenten "summarisch" zusammen, sondern resultiert vielmehr aus deren Wechselwirkungen. Technisch interessant erscheinen an dieser Stelle mindestens zwei Fragen: * Welcher Mechanismus begründet den genannten Widerspruch in Neuronenpopulationen? * Welche technische Anleihe bietet dieser Mechanismus? Die Modellierung einer Neuronenpopulation kann auf zweierlei Art und Weise erfolgen. Entweder durch die Aufklärung der Neuronenpopulation "von innen heraus", d.h. durch Beobachtung und mathematische Formulierung physiologischer Abläufe oder durch vergleichende Betrachtungen mit "konvergenten" Modellen, d.h. durch die Schaffung von Modellen mit vergleichbaren Phänomenen. Die nachfolgenden Ausführungen favorisieren die letztgenannte Vorgehensweise. Phänomene sind die ereignisabhängigen Schwellwertentwicklungen der Neuronen in Wechselwirkung mit den umgebenden Neuronen sowie die ereignisabhängigen Entwicklungen der synaptischen Verbindungsstärken zwischen den Neuronen, bezeichnet als "Leitwertentwicklung". Technische Anwendungen dieser Simulationsergebnisse werden erörtert, zum Beispiel die Nachbildung der Durchdringung diffusionsfähiger Medien mit Schadstoffen und die Objektvereinzelung.
2

Analytische Beschreibung von Ereignisabhängigkeiten in neuronalen Systemen

Schulze, Rainer W. 12 November 2012 (has links) (PDF)
Die Erregungsausbreitung in neuronalen Systemen beruht auf materieller Grundlage, Transmittermoleküle werden präsynaptisch emittiert und postsynaptisch absorbiert. Emission und Absorption sind einander sich selbst verursachende Prozesse, sie sind voneinander ereignisabhängig und damit nur schwer zu unterscheiden. Diese Schwierigkeit wird prekär, wenn es darum geht, den Prozeß der Erregungsausbreitung technisch modellieren und simulieren zu wollen. Im Verlaufe der Simulation bilden sich Abhängigkeiten heraus, deren Ursachen nicht mehr vereinzelt werden können. Demzufolge ist es schwierig, das Verhalten des Simulationsmodells zu prognostizieren. Gleichermaßen schwierig ist es aber auch, das gezeigte Verhalten zweifelsfrei interpretieren zu wollen. Aus diesem Grunde macht es sich erforderlich, das Verhalten eines neuronalen Netzes auf analytischem Wege zu beschreiben. Erschwerend wirkt hierbei der Umstand, daß es innerhalb des Netzes voneinander ereignisabhängige Prozesse gibt, die sich selbst verursachen. Zur Beschreibung dessen gibt es zwei in Raum und Zeit variable Parameter: erstens die Vorzugsorientierung bei der Erregungsausbreitung, bezeichnet als "Beweglichkeit", und zweitens die Durchlässigkeit des Netzes für den Erregungstransport, bezeichnet als "Diffusionskoeffizient". Diese beiden Parameter werden hergenommen, um eine vektoranalytische Beschreibungsgleichung abzuleiten, Unterschiede zu "klassischen" neuronalen Netzen werden herausgestellt.
3

Wechselwirkungen in einem Zellularen Beobachtungsgebiet - dargestellt am Beispiel einer Neuronenpopulation

Schulze, Rainer W. 12 November 2012 (has links) (PDF)
Vorgestellt wird ein Ansatz zur mathematischen Beschreibung der Erregungsausbreitung in einer Neuronenpopulation. Beschrieben werden im Detail die Einzugsgebiete der Erregungsausbreitung und die Intensität von Wechselwirkungen innerhalb solcher Einzugsgebiete. Als schwierig erweist sich dabei die Trennung von Ursache und Reaktion. In einer natürlichen Neuronenpopulationen sind Transmittermoleküle, die Botenstoffe zwischen den Neuronen, sowohl Erregung als auch Reaktion. Sie verursachen, angelagert auf der Membranoberfläche eines Neurons, dessen Erregung in Form einer Depolarisation; sie sind gleichermaßen aber auch Reaktion eines Neurons auf eine stattgefundene Erregung, wenn sie aus den Vesikeln des synaptischen Endknopfes in den synaptischen Spalt ausgeschüttet werden. Zur Überwindung dieser Dualität wird der Begriff Wirkstoff definiert. Ein Wirkstoff bewirkt etwas, er besitzt unter diesem Gesichtspunkt ein bestimmtes Potential. Die Ausbreitung von Wirkstoffen, nämlich die Wirkungsübertragung, ereignet sich extrazellulär in Raum und Zeit. Im Detail wird dargelegt, wie aus dem punktuellen Ausbreitungsverhaltens einer Erregung über das unvollständig globale Ausbreitungsverhalten auf das vollständig globale Ausbreitungsverhalten einer Erregung in einer Neuronenpopulation geschlußfolgert werden kann. Das Ziel besteht darin, einen Ansatz zur analytischen Beschreibung der Erregungsausbreitung in natürlichen Neuronenpopulationen vorzubereiten und in seiner Sinnfälligkeit zu plausibilisieren. Sinnfällig erscheinen solche Betrachtungen im Hinblick auf den Entwurf STOCHASTISCH MASSIV PARALLELER SYSTEME. Darunter werden technische Systeme verstanden, die sowohl in ihrem technischen Konzept als auch in ihrer Wirkungsweise Korrespondenzen zu natürlichen Neuronenpopulationen aufweisen. Ausgehend von der Struktur und dem Erregungsmechanismus eines Neurons soll in der Perspektive ein analytisches Entwurfswerkzeug für STOCHASTISCH MASSIV PARALLELE SYSTEME entwickelt werden.
4

Analytische Beschreibung von Ereignisabhängigkeiten in neuronalen Systemen

Schulze, Rainer W. 12 November 2012 (has links)
Die Erregungsausbreitung in neuronalen Systemen beruht auf materieller Grundlage, Transmittermoleküle werden präsynaptisch emittiert und postsynaptisch absorbiert. Emission und Absorption sind einander sich selbst verursachende Prozesse, sie sind voneinander ereignisabhängig und damit nur schwer zu unterscheiden. Diese Schwierigkeit wird prekär, wenn es darum geht, den Prozeß der Erregungsausbreitung technisch modellieren und simulieren zu wollen. Im Verlaufe der Simulation bilden sich Abhängigkeiten heraus, deren Ursachen nicht mehr vereinzelt werden können. Demzufolge ist es schwierig, das Verhalten des Simulationsmodells zu prognostizieren. Gleichermaßen schwierig ist es aber auch, das gezeigte Verhalten zweifelsfrei interpretieren zu wollen. Aus diesem Grunde macht es sich erforderlich, das Verhalten eines neuronalen Netzes auf analytischem Wege zu beschreiben. Erschwerend wirkt hierbei der Umstand, daß es innerhalb des Netzes voneinander ereignisabhängige Prozesse gibt, die sich selbst verursachen. Zur Beschreibung dessen gibt es zwei in Raum und Zeit variable Parameter: erstens die Vorzugsorientierung bei der Erregungsausbreitung, bezeichnet als 'Beweglichkeit', und zweitens die Durchlässigkeit des Netzes für den Erregungstransport, bezeichnet als 'Diffusionskoeffizient'. Diese beiden Parameter werden hergenommen, um eine vektoranalytische Beschreibungsgleichung abzuleiten, Unterschiede zu 'klassischen' neuronalen Netzen werden herausgestellt.
5

Technisch orientierte Modellierung der Erregungsausbreitung in neuronalen Systemen

Schulze, Rainer W. 12 November 2012 (has links)
Die Modellierung natürlicher Neuronenpopulationen stellt den Versuch dar, komplizierte Wechselwirkungen und Ereignisabhängigkeiten in biologischen Systemen quantitativ erfassen zu wollen. Widersprüchlich erscheint dabei die Tatsache, daß ein einzelnes Neuron in einer Population ohne Signifikanz ist, daß sich die gesamte Population aber aus einer Vielzahl derartiger Neuronen zusammensetzt und eine, technischen Systemen überlegene funktionelle Vielfalt besitzt /ZUR 92/, /HOL 93/. Ergo setzt sich die Gesamtleistung eines Systems nicht aus der Summe der Leistungen seiner Komponenten 'summarisch' zusammen, sondern resultiert vielmehr aus deren Wechselwirkungen. Technisch interessant erscheinen an dieser Stelle mindestens zwei Fragen: * Welcher Mechanismus begründet den genannten Widerspruch in Neuronenpopulationen? * Welche technische Anleihe bietet dieser Mechanismus? Die Modellierung einer Neuronenpopulation kann auf zweierlei Art und Weise erfolgen. Entweder durch die Aufklärung der Neuronenpopulation 'von innen heraus', d.h. durch Beobachtung und mathematische Formulierung physiologischer Abläufe oder durch vergleichende Betrachtungen mit 'konvergenten' Modellen, d.h. durch die Schaffung von Modellen mit vergleichbaren Phänomenen. Die nachfolgenden Ausführungen favorisieren die letztgenannte Vorgehensweise. Phänomene sind die ereignisabhängigen Schwellwertentwicklungen der Neuronen in Wechselwirkung mit den umgebenden Neuronen sowie die ereignisabhängigen Entwicklungen der synaptischen Verbindungsstärken zwischen den Neuronen, bezeichnet als 'Leitwertentwicklung'. Technische Anwendungen dieser Simulationsergebnisse werden erörtert, zum Beispiel die Nachbildung der Durchdringung diffusionsfähiger Medien mit Schadstoffen und die Objektvereinzelung.
6

Wechselwirkungen in einem Zellularen Beobachtungsgebiet - dargestellt am Beispiel einer Neuronenpopulation

Schulze, Rainer W. 12 November 2012 (has links)
Vorgestellt wird ein Ansatz zur mathematischen Beschreibung der Erregungsausbreitung in einer Neuronenpopulation. Beschrieben werden im Detail die Einzugsgebiete der Erregungsausbreitung und die Intensität von Wechselwirkungen innerhalb solcher Einzugsgebiete. Als schwierig erweist sich dabei die Trennung von Ursache und Reaktion. In einer natürlichen Neuronenpopulationen sind Transmittermoleküle, die Botenstoffe zwischen den Neuronen, sowohl Erregung als auch Reaktion. Sie verursachen, angelagert auf der Membranoberfläche eines Neurons, dessen Erregung in Form einer Depolarisation; sie sind gleichermaßen aber auch Reaktion eines Neurons auf eine stattgefundene Erregung, wenn sie aus den Vesikeln des synaptischen Endknopfes in den synaptischen Spalt ausgeschüttet werden. Zur Überwindung dieser Dualität wird der Begriff Wirkstoff definiert. Ein Wirkstoff bewirkt etwas, er besitzt unter diesem Gesichtspunkt ein bestimmtes Potential. Die Ausbreitung von Wirkstoffen, nämlich die Wirkungsübertragung, ereignet sich extrazellulär in Raum und Zeit. Im Detail wird dargelegt, wie aus dem punktuellen Ausbreitungsverhaltens einer Erregung über das unvollständig globale Ausbreitungsverhalten auf das vollständig globale Ausbreitungsverhalten einer Erregung in einer Neuronenpopulation geschlußfolgert werden kann. Das Ziel besteht darin, einen Ansatz zur analytischen Beschreibung der Erregungsausbreitung in natürlichen Neuronenpopulationen vorzubereiten und in seiner Sinnfälligkeit zu plausibilisieren. Sinnfällig erscheinen solche Betrachtungen im Hinblick auf den Entwurf STOCHASTISCH MASSIV PARALLELER SYSTEME. Darunter werden technische Systeme verstanden, die sowohl in ihrem technischen Konzept als auch in ihrer Wirkungsweise Korrespondenzen zu natürlichen Neuronenpopulationen aufweisen. Ausgehend von der Struktur und dem Erregungsmechanismus eines Neurons soll in der Perspektive ein analytisches Entwurfswerkzeug für STOCHASTISCH MASSIV PARALLELE SYSTEME entwickelt werden.
7

Eine computermodellgestützte Analyse der elektrophysiologischen Effekte von Gap-Junction-Lateralisierung und zellulärer Hypertrophie in kardialem Gewebe / A simulation study of the electrophysiological effects of gap junction lateralisation and cellular hypertrophy in cardiac tissue

Seidel, Thomas 08 December 2011 (has links) (PDF)
Die vorliegende Dissertation befasst sich mit Entstehungsmechanismen kardialer Arrhythmien auf der Grundlage pathologisch veränderten Myokards. Es wurde eine systematische Analyse der elektrophysiologischen Veränderungen, die als Folge von Gap-Junction- Lateralisierung und zellulärer Hypertrophie auftreten, durchgeführt. Die Analyse beruht auf einem mathematischen Computermodell, das zur Simulation der Aktionspotentialausbreitung innerhalb einer Einzelzellschicht humaner ventrikulärer Kardiomyozyten entwickelt wurde. Ausgehend von bestehenden Einzelzellmodellen wurde ein räumlich und zeitlich hoch aufgelöstes Multizellmodell generiert und in der Programmiersprache Object Pascal implementiert. Nach Validierung des Modells wurde es zur gezielten, an experimentellen Daten orientierten Manipulation geometrischer Eigenschaften der Zellen (Länge, Durchmesser) und des Zellverbandes (Anordnung der Zellen untereinander) sowie der Gap-Junction-Verteilung genutzt. Die Analyse der elektrophysiologischen Effekte im Vergleich zur Kontrolle fand sowohl unter Normalbedingungen als auch unter Bedingungen, die pathologischen Veränderungen entsprechen (Entkopplung der Gap-Junctions, verringerte Aktivität des schnellen Natriumkanals, erhöhte Inhomogenität), statt. Es zeigte sich, dass ein größerer Zelldurchmesser bzw. erhöhte laterale Gap-Junction-Leitfähigkeit (Simulation von kardialer Hypertrophie bzw. Connexin- Lateralisierung) die Entstehungswahrscheinlichkeit eines unidirektionalen Leitungsblocks erhöhte. Die Erregungsausbreitungsgeschwindigkeit in hypertrophierten Zellen war zudem weniger stabil als in normalen Zellen. Beide Effekte gehören zu den Hauptursachen der Entstehung und Aufrechterhaltung ventrikulärer Arrhythmien. Die Ergebnisse der Arbeit erklären somit Ursachen des erhöhten Arrhythmierisikos in pathologisch veränderten und hypertrophierten Herzen und liefern eine theoretische Grundlage für zukünftige Studien.
8

Eine computermodellgestützte Analyse der elektrophysiologischen Effekte von Gap-Junction-Lateralisierung und zellulärer Hypertrophie in kardialem Gewebe

Seidel, Thomas 01 November 2011 (has links)
Die vorliegende Dissertation befasst sich mit Entstehungsmechanismen kardialer Arrhythmien auf der Grundlage pathologisch veränderten Myokards. Es wurde eine systematische Analyse der elektrophysiologischen Veränderungen, die als Folge von Gap-Junction- Lateralisierung und zellulärer Hypertrophie auftreten, durchgeführt. Die Analyse beruht auf einem mathematischen Computermodell, das zur Simulation der Aktionspotentialausbreitung innerhalb einer Einzelzellschicht humaner ventrikulärer Kardiomyozyten entwickelt wurde. Ausgehend von bestehenden Einzelzellmodellen wurde ein räumlich und zeitlich hoch aufgelöstes Multizellmodell generiert und in der Programmiersprache Object Pascal implementiert. Nach Validierung des Modells wurde es zur gezielten, an experimentellen Daten orientierten Manipulation geometrischer Eigenschaften der Zellen (Länge, Durchmesser) und des Zellverbandes (Anordnung der Zellen untereinander) sowie der Gap-Junction-Verteilung genutzt. Die Analyse der elektrophysiologischen Effekte im Vergleich zur Kontrolle fand sowohl unter Normalbedingungen als auch unter Bedingungen, die pathologischen Veränderungen entsprechen (Entkopplung der Gap-Junctions, verringerte Aktivität des schnellen Natriumkanals, erhöhte Inhomogenität), statt. Es zeigte sich, dass ein größerer Zelldurchmesser bzw. erhöhte laterale Gap-Junction-Leitfähigkeit (Simulation von kardialer Hypertrophie bzw. Connexin- Lateralisierung) die Entstehungswahrscheinlichkeit eines unidirektionalen Leitungsblocks erhöhte. Die Erregungsausbreitungsgeschwindigkeit in hypertrophierten Zellen war zudem weniger stabil als in normalen Zellen. Beide Effekte gehören zu den Hauptursachen der Entstehung und Aufrechterhaltung ventrikulärer Arrhythmien. Die Ergebnisse der Arbeit erklären somit Ursachen des erhöhten Arrhythmierisikos in pathologisch veränderten und hypertrophierten Herzen und liefern eine theoretische Grundlage für zukünftige Studien.

Page generated in 0.0778 seconds