• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Inegalites de Gagliardo-Nirenberg optimales sur les varietes riemanniennes

Brouttelande, Christophe 30 June 2003 (has links) (PDF)
Les espaces de Sobolev jouent un rôle central dans la théorie des équations aux dérivées partielles. Les théorèmes de plongement de ces espaces dans les espaces de Lebesgue se traduisent en inégalités dites de Sobolev. Elles sont devenues un outil fondamental en analyse. Ces notions ont été introduites par S. L. Sobolev à la fin des années~30. D'autres mathématiciens se sont intéressés à ce domaine. On peut notamment citer les travaux d'E. Gagliardo et L. Nirenberg dans les années~50. L'étude des inégalités de Sobolev optimales trouve ses origines dans de grands problèmes d'analyse tels que le problème de Yamabe. Il existe plusieurs façons d'aborder cette étude. Nous parlerons plus particulièrement de programme AB et de programme BA. Le premier programme a été étudié, entre autre, par T. Aubin, O. Druet, E. Hebey et M. Vaugon. Le second trouve sa source en théorie des semi-groupes de Markov. Il a notamment été étudié par D. Bakry et M. Ledoux. Les inégalités de Sobolev sont un cas particulier des inégalités de Gagliardo-Nirenberg. Il est donc naturel de se demander si les résultats connus pour les inégalités de Sobolev s'adaptent aux autres inégalités de la famille. Les premiers travaux de ce type se sont portés sur l'inégalité de Nash et les inégalités de Sobolev logarithmique. Dans cette thèse, nous obtenons une généralisation de ces travaux à une famille d'inégalités plus large. Plus précisément, nous adaptons les programmes AB et BA à une sous-famille des inégalités de Gagliardo-Nirenberg contenant, entre autres, l'inégalité de Nash.
2

Inégalités de Gagliardo-Nirenberg précisées sur le groupe de Heisenberg

Chamorro, Diego 06 January 2006 (has links) (PDF)
Cette thèse étudie la généralisation des inégalités de Gagliardo Nirenberg précisées sur les groupes de Lie stratifiés. Dans le cas euclidien il existe trois méthodes en fonction de l'exposant p qui caractérise l'espace de Sobolev. La première série d'inégalités concerne les espaces de Sobolev avec p>1. La démonstration de ces estimations découle de la caractérisation des espaces fonctionnels avec une analyse de Littlewood Paley. Pour traiter le cas p=1 il est nécessaire d'utiliser une autre technique. Nous allons utiliser les propriétés du noyau de la chaleur en généralisant la pseudo inégalité de Poincaré. Ce cas permet l'étude de l'espace de fonction BV, mais ne permet pas de considérer un espace de Sobolev dans le membre de gauche des inégalités. La troisième méthode de démonstration se base sur une décomposition en ondelettes à support compact et la généralisation au groupe de Heisenberg reste ouverte. On traite aussi des généralisations sur certains groupes de Lie et on discute une caractérisation de l'espace BV en termes d'espaces de Besov sur le groupe 2-adique
3

Interpolation réelle des espaces de Sobolev sur les espaces métriques mesurés et applications aux inégalités fonctionnelles

Badr, Nadine 17 December 2007 (has links) (PDF)
Dans cette thèse, nous étudions l'interpolation réelle des espaces de Sobolev et ses applications. Le manuscrit est constitué de deux parties. Dans la première partie, nous démontrons au premier chapitre que les espaces de Sobolev non homogènes W^1_p (resp. homogènes ) sur les variétés Riemanniennes complètes vérifiant la propriété de doublement et une inégalité de Poincaré forment une échelle d'interpolation réelle pour un intervalle de valeurs de p. Nous étendons ce résultat à d'autres cadres géométriques. Dans un deuxième court chapitre, nous comparons différents espaces de Sobolev sur le cone Euclidien et nous regardons le lien de ces espaces avec l'interpolation. Nous montrons sur cet exemple que l'hypothèse de Poincaré n'est pas une condition nécessaire pour pouvoir interpoler les espaces de Sobolev. Dans le dernier chapitre de cette partie, nous définissons les espaces de Sobolev non homog'nes W^1_p,V (resp. homogènes ) associés à un potentiel positif V sur une variété Riemannienne. Nous démontrons que si la variété véifie la propriété de doublement et une inégalité de Poincaré et si de plus V est dans une classe de Holder inverse, ces espaces forment aussi une échelle d'interpolation réelle pour un intervalle de valeurs de p. Nous étendons ce résultat aux cas des groupes de Lie. Dans la deuxième partie, dans un premier chapitre en collaboration avec E. Russ, nous étudions sur un graphe vérifiant la propriété de doublement et une inégalité de Poincaré, la Lp bornitude de la transformée de Riesz pour p > 2 et son inégalité inverse pour p < 2. Pour notre but, nous démontrons aussi des résultats d'interpolation des espaces de Sobolev et des inégalités de Littlewood-Paley. Dans le deuxième chapitre, nous démontrons en utilisant notre résultat d'interpolation, des inégalités de Gagliardo-Nirenberg sur les variétés Riemanniennes complètes vérifiant le doublement, des inégalités de Poincaré et pseudo-Poincaré. Ce résultat s'applique aussi dans le cadre des groupes de Lie et des graphes.

Page generated in 0.0976 seconds