• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1598
  • 689
  • 348
  • 186
  • 180
  • 93
  • 71
  • 54
  • 46
  • 32
  • 19
  • 18
  • 11
  • 10
  • 7
  • Tagged with
  • 3972
  • 574
  • 489
  • 467
  • 464
  • 428
  • 404
  • 399
  • 370
  • 360
  • 330
  • 315
  • 311
  • 306
  • 306
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
381

Analytical Study on Adhesively Bonded Joints Using Peeling Test and Symmetric Composite Models Based on Bernoulli-Euler and Timoshenko Beam Theories for Elastic and Viscoelastic Materials

Su, Ying-Yu 2010 December 1900 (has links)
Adhesively bonded joints have been investigated for several decades. In most analytical studies, the Bernoulli-Euler beam theory is employed to describe the behaviour of adherends. In the current work, three analytical models are developed for adhesively bonded joints using the Timoshenko beam theory for elastic material and a Bernoulli-Euler beam model for viscoelastic materials. One model is for the peeling test of an adhesively bonded joint, which is described using a Timoshenko beam on an elastic foundation. The adherend is considered as a Timoshenko beam, while the adhesive is taken to be a linearly elastic foundation. Three cases are considered: (1) only the normal stress is acting (mode I); (2) only the transverse shear stress is present (mode II); and (3) the normal and shear stresses co-exist (mode III) in the adhesive. The governing equations are derived in terms of the displacement and rotational angle of the adherend in each case. Analytical solutions are obtained for the displacements, rotational angle, and stresses. Numerical results are presented to show the trends of the displacements and rotational angle changing with geometrical and loading conditions. In the second model, the peeling test of an adhesively bonded joint is represented using a viscoelastic Bernoulli-Euler beam on an elastic foundation. The adherend is considered as a viscoelastic Bernoulli-Euler beam, while the adhesive is taken to be a linearly elastic foundation. Two cases under different stress history are considered: (1) only the normal stress is acting (mode I); and (2) only the transverse shear stress is present (mode II). The governing equations are derived in terms of the displacements. Analytical solutions are obtained for the displacements. The numerical results show that the deflection increases as time and temperature increase. The third model is developed using a symmetric composite adhesively bonded joint. The constitutive and kinematic relations of the adherends are derived based on the Timoshenko beam theory, and the governing equations are obtained for the normal and shear stresses in the adhesive layer. The numerical results are presented to reveal the normal and shear stresses in the adhesive.
382

Characterization of high energy beam welding of 6061/SiC aluminum matrix composites

Huang, Ru-Ying 14 July 2000 (has links)
The current thesis was designed to examine the welding characteristics of laser and electron beam welding of the superplastic metal matrix composites (MMCs) reinforced with 1~20% SiC and to differentiate the difference between the 6061 aluminum alloy and 6061/SiC composites. The 6061/20%SiCw MMC was found to exhibit poor welding characteristics under electron beam welding. This was because that the SiC whiskers would induce poor fluidity of molten Al matrix and the electron beam continuously bombared the MMC resulting in material loss through sputtering, and this effect induced an "V" groove formed at the center of the fusion zone. The laser beam welding of the 20% SiCw MMCs caused the decomposition of the SiCw into Al4C3 platelets at the center region of the fusion zone, as well as cavities along the outer region due to thermal expansion differences. The post-weld tensile test results showed that the brittle weld zone lead to the degradation of strength, and the 6061/20%SiCw MMC after welding would lose superplastic properties. There were some differences between the 6061 alloy and MMC upon subjected to laser beam welding. The absorption of laser energy by the MMC was better than that by the alloy; the absorption of laser energy increased with increasing SiC content. The shape of the reinforced material could also influence the quantity of Al4C3 formed. The total surface area of SiC particles was smaller than that of the SiC whiskers under equal volume fraction, therefore more SiC whiskers were decomposed. In the wetting experiment, the wettability and fluidity of molten material was observed to decrease with increasing SiC volume fraction at the same temperature. The wettability could be improved at higher temperatures. For the 20%SiCw MMC, the wettability and fluidity could not be sufficiently improved even at a high temperature of 1300¢J, which appeared to be the cause for the lack of feeding in the central fusion zone.
383

Impact of AASHTO LRFD specifications on the design of precast, pretensioned u-beam bridges

Adnan, Mohsin 12 April 2006 (has links)
Texas Department of Transportation (TxDOT) is currently designing its highway bridge structures using the AASHTO Standard Specifications for Highway Bridges, and it is expected that TxDOT will make transition to the use of the AASHTO LRFD Bridge Design Specifications before 2007. The objectives of this portion of the study are to evaluate the current LRFD Specifications to assess the calibration of the code with respect to typical Texas U54 bridge girders, to perform a critical review of the major changes when transitioning to LRFD design, and to recommend guidelines to assist TxDOT in implementing the LRFD Specifications. This study focused only on the service and ultimate limit states and additional limit states were not evaluated. The available literature was reviewed to document the background research relevant to the development of the LRFD Specifications, such that it can aid in meeting the research objectives. Two detailed design examples, for Texas U54 beams using the LRFD and Standard Specifications, were developed as a reference for TxDOT bridge design engineers. A parametric study was conducted for Texas U54 beams to perform an in-depth analysis of the differences between designs using both specifications. Major parameters considered in the parametric study included span length, girder spacing, strand diameter and skew angle. Based on the parametric study supplemented by the literature review, several conclusions were drawn and recommendations were made. The most crucial design issues were significantly restrictive debonding percentages and the limitations of approximate method of load distribution.The current LRFD provisions of debonding percentage of 25 percent per section and 40 percent per row will pose serious restrictions on the design of Texas U54 bridges. This will limit the span capability for the designs incorporating normal strength concretes. Based on previous research and successful past practice by TxDOT, it was recommended that up to 75% of the strands may be debonded, if certain conditions are met. The provisions given in the LRFD Specifications for the approximate load distribution are subject to certain limitations of span length, edge distance parameter (de) and number of beams. If these limitations are violated, the actual load distribution should be determined by refined analysis methods. During the parametric study, several of these limitations were found to be restrictive for typical Texas U54 beam bridges. Two cases with span lengths of 140 ft. and 150 ft., and a 60 degree skew were investigated by grillage analysis method.
384

Rigorous joining of advanced reduced-dimensional beam models to 3D finite element models

Song, Huimin 07 April 2010 (has links)
This dissertation developed a method that can accurately and efficiently capture the response of a structure by rigorous combination of a reduced-dimensional beam finite element model with a model based on full two-dimensional (2D) or three-dimensional (3D) finite elements. As a proof of concept, a joint 2D-beam approach is studied for planar-inplane deformation of strip-beams. This approach is developed for obtaining understanding needed to do the joint 3D-beam model. A Matlab code is developed to solve achieve this 2D-beam approach. For joint 2D-beam approach, the static response of a basic 2D-beam model is studied. The whole beam structure is divided into two parts. The root part where the boundary condition is applied is constructed as a 2D model. The free end part is constructed as a beam model. To assemble the two different dimensional model, a transformation matrix is used to achieve deflection continuity or load continuity at the interface. After the transformation matrix from deflection continuity or from load continuity is obtained, the 2D part and the beam part can be assembled together and solved as one linear system. For a joint 3D-beam approach, the static and dynamic response of a basic 3D-beam model is studied. A Fortran program is developed to achieve this 3D-beam approach. For the uniform beam constrained at the root end, similar to the joint 2D-beam analysis, the whole beam structure is divided into two parts. The root part where the boundary condition is applied is constructed as a 3D model. The free end part is constructed as a beam model. To assemble the two different dimensional models, the approach of load continuity at the interface is used to combine the 3D model with beam model. The load continuity at the interface is achieved by stress recovery using the variational-asymptotic method. The beam properties and warping functions required for stress recovery are obtained from VABS constitutive analysis. After the transformation matrix from load continuity is obtained, the 3D part and the beam part can be assembled together and solved as one linear system. For a non-uniform beam example, the whole structure is divided into several parts, where the root end and the non-uniform parts are constructed as 3D models and the uniform parts are constructed as beams. At all the interfaces, the load continuity is used to connect 3D model with beam model. Stress recovery using the variational-asymptotic method is used to achieve the load continuity at all interfaces. For each interface, there is a transformation matrix from load continuity. After we have all the transformation matrices, the 3D parts and the beam parts are assembled together and solved as one linear system.
385

Anwendung des in-beam PET Therapiemonitorings auf Präzisionsbestrahlungen mit Helium-Ionen

Fiedler, Fine 25 March 2008 (has links) (PDF)
Das Hauptziel einer Strahlentherapie, die möglichst vollständige Vernichtung des Tumorgewebes bei einer höchstmöglichen Schonung des umliegenden Gewebes und der Risikoorgane, kann mit Kohlenstoffionen besser als mit Elektronen oder Gammastrahlung erreicht werden. Ionen haben ein inverses Tiefen-Dosisprofil, sie geben einen Großteil ihrer Energie am Ende ihres Weges durch Materie ab. Dieses Energieabgabeverhalten, die wohl definierte Reichweite und die erhöhte biologische Wirksamkeit im Tumor prädestinieren zum Beispiel Kohlenstoffionen für die Behandlung inoperabler, gegen konventionell eingesetzte Strahlung resistenter Tumoren. Allerdings führen diese Eigenschaften der Strahlung auch dazu, dass Veränderungen der Dichte der Materie im Strahlweg zu einer Verschiebung des Maximums der Energieabgabe und damit zu einer deutlichen Veränderung der Dosisverteilung führen. Ein Monitoring der reichweitesensitiven Ionenbestrahlungen ist somit erforderlich. Die Positronen-Emissions-Tomographie (PET), die normalerweise dazu benutzt wird, die Verteilung eines injizierten Positronenemitters im Gewebe zu bestimmen, kann hier eingesetzt werden. Durch Kernreaktionen der einfliegenden Kohlenstoffionen mit Atomkernen des Gewebes kommt es zur Erzeugung von Positronenemittern, die über ihren Zerfall mit dem an der experimentellen Therapieanlage an der Gesellschaft für Schwerionenforschung installierten in-beam PET-Scanner nachgewiesen werden können. Da die Dosisverteilung und die erzeugte Aktivitätsverteilung durch verschiedene physikalische Prozesse bedingt sind, ist ein direkter Vergleich der PET-Messung mit der von den Ärzten und Medizinphysikern festgelegten Dosisverteilung nicht möglich. Aus der Dosisverteilung und dem Zeit-ablauf der Bestrahlung wird eine Vorhersage der Aktivitätsverteilung berechnet, die dann mit der Messung verglichen wird. Auf der Grundlage dieses Vergleiches ist die in-beam PET-Methode in der Lage, während der Behandlung Reichweiteabweichungen im Patienten, Ungenauigkeiten in der Positionierung und auch Fehler im physikalischen Strahlmodell aufzuzeigen. Trotz einer guten Anpassung der in der Vorausberechnung verwendeten physikalischen Modelle an die Realität kommt es zu Abweichungen, die nicht mit einer ungenauen Dosisapplikation begründbar sind. Diese sind zum größten Teil durch die metabolischen Vorgänge im Patienten bedingt, an denen die Positronenemitter teilnehmen. Diese Washout-Prozesse sind zwischen verschiedenen Patienten und verschiedenen Behandlungstagen nicht reproduzierbar. Im Rahmen der vorliegenden Arbeit wurde eine Quantifizierung des Washouts in Abhängigkeit verschiedener Parameter vorgenommen, deren Berücksichtigung zur Verbesserung der Vorausberechnung führt. Um eine flexiblere Positionierung des Patienten am raumfesten Bestrahlungssystem der GSI zu ermöglichen, wurde an der GSI ein Bestrahlungsstuhl entwickelt. Um auch bei der Bestrahlung sitzender Patienten eine in-beam PET-Messung zu ermöglichen, sind die beiden Detektor-Einheiten der PET-Kamera um die Strahlachse drehbar. Durch die hohe Eigenmasse der Detektoren kommt es jedoch zu Deformationen der idealen Kreisbahn. Um eine ortsgenaue Rekonstruktion der Daten zu ermöglichen, müssen diese Deformationen quantifiziert und korrigiert werden. Dies war ein weiteres Anliegen dieser Arbeit. Das wichtigste Ziel der vorliegenden Dissertation jedoch war, die in-beam PET-Methode auf neue Ionensorten zu erweitern. Es wurde gezeigt, dass die in-beam PET-Methode auch für 3He-Bestrahlungen angewendet werden kann. Dafür wurden Experimente an einem 3He-Strahl durchgeführt. Die Aktivitätsausbeute ist bei gleicher applizierter Dosis etwa dreimal so hoch wie bei 12C-Bestrahlungen. Die erreichbare Reichweite-Auflösung ist kleiner als 1 mm. Bei der Bestrahlung eines inhomogenen Phantoms wurde gezeigt, dass ein Kontrast zwischen verschiedenen Materialien auflösbar ist. Aus den experimentell bestimmten Reaktionsraten wurden Wirkungsquerschnitte für zu Positronenemittern führende Reaktionen abgeschätzt. Die in den 3He-Experimenten genommenen Daten wurden denen in Kohlenstoff-Ionen-Experimenten gewonnen sowie Literaturdaten für Protonenbestrahlungen gegenübergestellt. Ein Vergleich mit den Rechnungen des Simulationsprogrammes Shield-Hit erfolgte. Eine Zusammenstellung von Wirkungsquerschnittsmodellen und die aufgestellten Anforderungen an ein für in-beam PET verwendbares Simulationsprogramm sind vorbereitend für weitere Arbeiten.
386

An ultra-compact and low loss passive beamforming network integrated on chip with off chip linear array

Lepkowski, Stefan 08 June 2015 (has links)
The work here presents a review of beam forming architectures. As an example, the author presents an 8x8 Butler Matrix passive beam forming network including the schematic, design/modeling, operation, and simulated results. The limiting factor in traditional beam formers has been the large size dictated by transmission line based couplers. By replacing these couplers with transformer-based couplers, the matrix size is reduced substantially allowing for on chip compact integration. In the example presented, the core area, including the antenna crossover, measures 0.82mm×0.39mm (0.48% the size of a branch line coupler at the same frequency). The simulated beam forming achieves a peak PNR of 17.1 dB and 15dB from 57 to 63GHz. At the 60GHz center frequency the average insertion loss is simulated to be 3.26dB. The 8x8 Butler Matrix feeds into an 8-element antenna array to show the array patterns with single beam and adjacent beam isolation.
387

Estimation of beam prestress by deflection and strain measurements

An, JinWoo 29 October 2012 (has links)
Laboratory test of reinforced and prestressed concrete structures have been used widely to explore the behavior of reinforced and prestressed concrete components and structures; Such tests are often time-consuming and costly. However, numerical models have been shown to compare favorably with experiments. Thus, computations are viewed nowadays as efficient alternatives to tests, time-wise and cost-wise. In the research reported in this thesis, finite-element model were used in a study of pretressed structural components in order to correlate levels of pretension with deflection and strain measurements. The two main objectives were to develop a suitable finite element model of prestressed concrete beams and to forecast beam prestension on the basis of deformations resulting from specified simple load, e.g., a uniformly distributed transverse load. A commercial finite-element analysis package (ANSYS 12) was used to set up, use and evaluate the computational model. Furthermore, a finite-difference model was employed in order to ascertain the validity of ANSYS results by comparison with engineering beam theory taking into account the applied pretension. This study demonstrates the potential usefulness of deflection and strain measurements as indicators of the pretension applied or remaining in prestressed concrete beams. / text
388

A Neutral Beam Probe for the Helimak plasma experiment

Garcia de Gorordo, Alvaro 15 July 2013 (has links)
A Neutral Beam Probe (NBP) was developed for studying the Texas Helimak plasma experiment. The probe consisted of a beam of neutral sodium atoms that were injected into the magnetized plasma of the Helimak. After some fraction of the atoms underwent electron impact ionization, the resulting ion beam followed a path to an energy analyzer where the change of energy was detected along with the total ion current. The measurement of the change of energy implies a change of potential energy at the point of ionization since all the neutral beam particles enter the plasma with a well determined energy. The total current detected at the energy analyzer also implies a rate of electron impact ionization, which in turn implies an electron density and temperature. The NBP was developed based on the Elmo Bumpy Torus (EBT) Heavy Ion Beam Probe (HIBP), which was operated at Oak Ridge National Labs. In fact, the majority of the equipment that was used in this experiment was taken from that HIBP, and some of it was rebuilt. We generated an estimate of the radial electric field in the Helimak along with an estimate of density changes as a result of biasing experiments. Interestingly, when a bias voltage was applied inside the Helimak, the radial electric field did not change significantly at the sample region, but the electron density did vary. The probe data taken by the Helimak team agree with the density changes. The electric field derived from Langmuir probes is not trivial (especially in plasmas with flows) and was not computed for this thesis. / text
389

Evaluation of potential induced activity in medical devices sterilized with electron beam irradiation as a function of maximum electron energy

Smith, Mark Anthony, 1956- 09 February 2011 (has links)
Commercial sterilization of medical devices may be performed using electron beam irradiators, which operate at various electron energies. The potential for activating components of the devices has been discussed, with current standards stating that an electron energy greater than 10 MeV requires assessment of potential induced radioactivity. There does not appear to be a literature citation for this energy limit, but it is the accepted default assumption within the industry. This research was directed at evaluating potential activation in medical products sterilized in electron beam as a function of the electron maximum energy. Monte Carlo simulation of a surrogate medical device was used to calculate photon and neutron fields resulting from electron irradiation, which were used to calculate concentrations for several radionuclides. The predominant mechanism for inducing radioactivity is photoneutron production in metal elements. Other mechanisms, including photoneutron production in deuterium with subsequent neutron capture, neutron capture of the photoneutrons produced in metal elements, and isomeric excitation, are all possible means of inducing radioactivity in similar conditions, but none made a perceptible contribution to activation in these experiments. The experiments confirmed that 10 MeV is a conservative assumption that any lower energy does not create significant activation. However, in the absence of a limited number of elements, the amount of induced radioactivity at 11 MeV and 12 MeV could also be considered insignificant. When based on an estimate of the amount of metal present in a medical device, the sum-of-fractions comparison to the US Nuclear Regulatory Commission exempt concentration limits is less than unity for all energies below 12.1 MeV, which suggests that there is minimal probability of significant induced activity at energies above the generally-accepted standard 10 MeV upper energy limit. / text
390

Shear behavior of prestressed concrete U-beams

Moore, Andrew Michael, 1984- 14 February 2011 (has links)
An experimental study was conducted at the Ferguson Structural Engineering Laboratory in order to investigate the shear behavior of 54-inch deep prestressed concrete U-beams. The primary goal of this research was to improve the design and detailing of the skewed end-blocks commonly used in these beams. As U-beams had been in service for several decades without incident, it was anticipated that there would be little need for change in the design, and the findings of the research would involve a slight tweaking to improve the overall performance. Unfortunately, during the first phase of shear testing (testing of the current design standard) it was found that the U-beam was not reaching the code calculated shear capacity. During this phase of testing the premature failure mechanism was isolated as the breakdown of the web-to-flange interface in the end region of the girder. Therefore, the second phase of testing sought to prevent the breakdown of this boundary by three options: (1) increasing the web width while maintaining current levels of mild reinforcement, (2) increasing the web width while also increasing the amount of reinforcement crossing the web-to-flange boundary, or (3) by increasing the amount of reinforcement at the boundary while maintaining the current web width. Two acceptable solutions to the premature failure method were developed and tested during this phase both of which included an increase in the amount of mild reinforcement crossing the web-to-flange interface (with and without an increase in web width). The research into refining of these new details is ongoing as part of the Texas Department of Transportation’s Research Project number 0-5831. / text

Page generated in 0.0454 seconds