• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 2
  • 1
  • Tagged with
  • 5
  • 5
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Investigation on Fatigue Behavior of Alloys by Various Approaches

January 2018 (has links)
abstract: Fatigue is a degradation process of materials that would lead to failure when materials are subjected to cyclic loadings. During past centuries, various of approaches have been proposed and utilized to help researchers understand the underlying theories of fatigue behavior of materials, as well as design engineering structures so that catastrophic disasters that arise from fatigue failure could be avoided. The stress-life approach is the most classical way that academia applies to analyze fatigue data, which correlates the fatigue lifetime with stress amplitudes during cyclic loadings. Fracture mechanics approach is another well-established way, by which people regard the cyclic stress intensity factor as the driving force during fatigue crack nucleation and propagation, and numerous models (such as the well-known Paris’ law) are developed by researchers. The significant drawback of currently widely-used fatigue analysis approaches, nevertheless, is that they are all cycle-based, limiting researchers from digging into sub-cycle regime and acquiring real-time fatigue behavior data. The missing of such data further impedes academia from validating hypotheses that are related to real-time observations of fatigue crack nucleation and growth, thus the existence of various phenomena, such as crack closure, remains controversial. In this thesis, both classical stress-life approach and fracture-mechanics-based approach are utilized to study the fatigue behavior of alloys. Distinctive material characterization instruments are harnessed to help collect and interpret key data during fatigue crack growth. Specifically, an investigation on the sub-cycle fatigue crack growth behavior is enabled by in-situ SEM mechanical testing, and a non-uniform growth mechanism within one loading cycle is confirmed by direct observation as well as image interpretation. Predictions based on proposed experimental procedure and observations show good match with cycle-based data from references, which indicates the credibility of proposed methodology and model, as well as their capability of being applied to a wide range of materials. / Dissertation/Thesis / Masters Thesis Materials Science and Engineering 2018
2

Untersuchung der Versetzungsnukleation in Gold-Nanodrähten durch in-situ Elektronenmikroskopie / Investigation of dislocation nucleation in gold nanowires by in situ electron microscopy

Kapelle, Bahne 12 February 2016 (has links)
Die mechanischen Eigenschaften eines Materials spielen eine entscheidende Rolle für mögliche Anwendungen. Für nanoskalige Metalle ist lange bekannt, dass sich deren mechanischen Eigenschaften von ihren bulk-Gegenstücken stark unterscheiden. In bulk-Metallen wird die Verformung durch die Wechselwirkung vorhandener Versetzungen kontrolliert. Dies erweist sich scheinbar auf der Nanoebene als weniger zutreffend, da nur wenige oder keine Versetzungen in nanoskaligen Proben vorhanden sind und diese einfach aus der Probe herauslaufen können, ohne dass es vorher zu einer Wechselwirkung kommt. Die Verformung wird dann bestimmt durch die Nukleation neuer Versetzungen. In dieser Arbeit wurde die Verformung von Gold-Nanodrähten mit einem Durchmesser zwischen 50 und 150nm, die entweder einkristallin oder entlang ihrer Länge verzwillingt waren, untersucht. Auf der einen Seite erfolgte die Durchführung der Versuche in-situ im Transmissionselektronenmikroskop, um die Entwicklung der Defektmorphologie direkt beobachten zu können. Auf der anderen Seite wurden ebenfalls Tests in-situ im Rasterelektronenmikroskop mit einem neu entwickelten Aufbau durchgeführt und dabei das Spannungs-Dehnungs-Verhalten der Nanodrähte analysiert. Sämtliche Nanodrähte zeigten anfänglich ein elastisches Verhalten mit einem Elastizitätsmodul, das größenunabhängig war und nahe an dem entsprechenden Wert für Bulk-Gold lag. Mit Beginn der plastischen Verformung entstehen planare Defekte homogen verteilt entlang der Drähte, sowohl bei einkristallinen als auch verzwillingten Drähten. Zusammen mit der gemessenen Nukleationsspannung zeigte dies eine gute Übereinstimmung mit existierenden Modellen für die Oberflächennukleation von leading-Partialversetzungen, die auf klassischer Nukleationstheorie basieren. Mit weiterer Verformung kommt es ebenfalls zur Nukleation von trailing-Partialversetzungen, wodurch bereits entstandene planare Defekte wieder verschwinden und im Fall von verzwillingten Drähten volle Versetzungen gespeichert werden. Da die Nukleation von trailing-Partialversetzungen durch die existierenden Modelle nicht vorhergesagt wird, öffnet diese Beobachtung neue Fragen, ob klassische Nukleationstheorie in der Lage ist, die Nukleation von Versetzungen korrekt darzustellen.
3

Beziehung zwischen Struktur und Bruchzähigkeit von Holzzellwänden / Relation between structure and toughness of wood cell walls

Maaß, Mona-Christin 30 June 2020 (has links)
No description available.
4

Mécanismes d’endommagement du polyamide-66 renforcé par des fibres de verre courtes, soumis à un chargement monotone et en fatigue : Influence de l’humidité relative et de la microstructure induite par le moulage par injection / Damage mechanisms in short glass fiber reinforced polyamide-66 under monotic and fatigue loading : Effect of relative humidity and injection molding induced microstructure

Arif, Muhamad Fatikul 25 March 2014 (has links)
Le présent travail s'appuie sur une approche expérimentale étendue visant l'identification des mécanismes d'endommagement en chargement quasi-statique et en fatigue du PA66/GF30, en prenant notamment en compte l'influence de la teneur en eau et de la microstructure induite par le moulage par injection. Les essais et les observations in situ au MEB mettent en exergue le rôle déterminant de l'humidité relative sur l'initiation, le niveau et la chronologie de l'endommagement. Une analyse par micro-tomographie aux rayons X sur des échantillons ayant subi un chargement de fatigue montre que l'endommagement augmente continuellement et progressivement au cours de la fatigue, et plus significativement dans la deuxième moitié de sa durée de vie. Les résultats obtenus en quasi-statique et en fatigue révèlent des mécanismes d'endommagement similaires, notamment une décohésion des interfaces fibre/matrice. Une chronologie générale de l'endommagement est établie. Celui-ci s'initie en extrémités de fibres ou plus globalement là où les fibres sont relativement proches les unes des autres. Il s'ensuit des décohésions interfaciales se propageant le long des fibres. A une contrainte en flexion plus élevée, des microfissures de la matrice peuvent apparaître et se propager par coalescence, ce qui aboutira à la rupture. Ces résultats expérimentaux permettent d'alimenter une modélisation multi-échelles de l'endommagement à fort contenu physique. Celle-ci contribuera alors à une prédiction pertinente de l'endommagement dans les thermoplastiques renforcés pour application automobile. / The current work focuses on extensive experimental approaches to identify quasi-static and fatigue damage behavior of PA66/GF30 considering various effects such as relative humidity and injection process induced microstructure. By using in situ SEM tests, it was observed that relative humidity conditions strongly impact the damage mechanisms in terms of their initiation, level and chronology. The X-ray micro-tomography analysis on fatigue loaded samples demonstrated that the damage continuously increases during fatigue loading, but the evolution occurs more significantly in the second half of the fatigue life. From the results of damage investigation under quasi-static and fatigue loading, it was established that both loading types exhibit the same damage mechanisms, with fiber/matrix interfacial debonding as the principal damage mechanisms. General damage chronologies were proposed as the damage initiates at fiber ends and more generally at locations where fibers are relatively close to each other due to the generation of local stress concentrations. Afterwards, interfacial decohesions further propagate along the fiber/matrix interface. At high relative flexural stress, matrix microcracks can develop and propagate, leading to the damage accumulation and then the final failure. The experimental findings are important to provide a physically based damage mechanisms scenarios that can be integrated into multiscale damage models. These models will contribute towards reliable predictions of damage in reinforced thermoplastics for lightweight automotive applications.
5

Mechanical behaviour of carbon nanostructures

Jackman, Henrik January 2014 (has links)
Abstract Carbon nanotubes (CNTs) have extraordinary mechanical and electrical properties. Together with their small dimensions and low density, they are attractive candidates for building blocks in future nanoelectromechanical systems and for many other applications. The extraordinary properties are however only attained by perfectly crystalline CNTs and quickly deteriorate when defects are introduced to the structure. The growth technique affects the crystallinity where in general CNTs grown by arc-discharge are close to perfectly crystalline, while CVD-grown CNTs have large defect densities. Mechanical deformation also affects these properties, even without introducing defects. When CNTs are bent they behave similarly to drinking straws, i.e. they buckle or ripple and their bending stiffness drops abruptly. In this thesis, the mechanical behaviour of individual CNTs and vertically aligned carbon nanofibers (VACNFs) has been studied by performing force measurements inside electron microscopes. Cantilevered CNTs, and VACNFs, were bent using a force sensor, yielding force-deflection curves while their structure was imaged simultaneously. We have found that CNTs grown by arc-discharge have a high enough crystallinity to possess a Young’s modulus close to the ideal value of 1 TPa. CVD-grown CNTs possess a Young’s modulus that is about one order of magnitude smaller, due to their large defect density. The VACNFs are yet another order of magnitude softer as a result of their cup-stacked internal structure.  We also found that a high defect density will increase the critical strain for the rippling onset and the relative post-rippling stiffness. Multi-walled CNTs with a small inner diameter are less prone to ripple and have a larger relative post-rippling stiffness. Our findings show large variations in the onset of rippling and the bending stiffness before and after rippling. These variations open up possibilities of tailoring the mechanical properties for specific applications. / Baksidetext Carbon nanotubes (CNTs) have extraordinary mechanical and electrical properties. Together with their small dimensions and low density, they are attractive candidates for building blocks in nanoelectromechanical systems (NEMS), and many other applications.  In this thesis the mechanical behaviour of individual CNTs and vertically aligned carbon nanofibers has been studied by performing force measurements inside electron microscopes. We have found that the mechanical behaviour is very sensitive to the defect density and the internal structure of the CNTs. The extraordinary properties are only attained by defect free CNTs and quickly deteriorate if defects are introduced to the structure. Mechanical deformations also alter these properties. Single-walled CNTs behave similarly to drinking straws when bent, i.e. they buckle, while the inner tubes of multi-walled CNTs prevent buckling. Instead a more distributed rippling pattern is created for multi-walled CNTs. Both these deformation behaviours will cause an abrupt drop in the bending stiffness, which is detrimental for many applications. The findings in this work will have implications for the design of future NEMS. / <p>Artikel 2 Image formation mechanisms tidigare som manuskript, nu publicerad: urn:nbn:se:kau:diva-16425 (MÅ 150924)</p>

Page generated in 0.0376 seconds