• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 32
  • 3
  • 1
  • 1
  • 1
  • Tagged with
  • 66
  • 66
  • 16
  • 14
  • 14
  • 11
  • 11
  • 9
  • 8
  • 8
  • 7
  • 7
  • 7
  • 7
  • 7
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
51

Analyzing Floodplain Reconnection as a Restoration Method: Water Storage, SedimentDynamics, and Nutrient Cycling in Restored and Unrestored Streams

Gurrola, Annika J. 10 September 2021 (has links)
No description available.
52

A Post-Project Assessment of the Provo River Restoration Project: Channel Design, Reconfiguration, and the Re-Establishment of Critical Physical Processes

Goetz, Randy Ray 01 May 2008 (has links)
A physical assessment of the Provo River Restoration Project was undertaken in order to determine how alterations to the channel were designed, the nature of as-built channel morphology, and the performance of the reconfigured channel in terms of achieving frequent (2-year recurrence) bankfull discharge and increasing transient storage. Measures of channelized and reconfigured channel morphology were obtained using total station survey, digital aerial photography, and pebble counts. Results of geomorphic analysis were compared with similar measurements made by a regional consulting company, and stream channel design data, in order to determine that intended mitigation included reducing channel capacity, increasing sinuosity, decreasing pool spacing, and decreasing the size of bed material. Reconfiguration of the channel resulted in somewhat enlarged cross-sections with reduced mean velocities, increased sinuosity, decreased pool spacing, and decreased bed substrate size. One-dimensional hydraulic modeling suggests that alterations to channel morphology have increased the bankfull channel capacity in most reaches. Modeling results illustrate the fact that the stage of the 2-year recurrence flood is below bankfull at most cross-sections. This result does not follow the intentions of channel design. However, we have observed floodplain inundation in most years since reconfiguration. The occurrence floodplain inundation is being facilitated by overbank flow at a few point locations illustrating the strengths of incorporating variability into design. Known geomorphic controls on transient storage were reconfigured in manner to potentially increase in-channel and hyporheic components of transient storage. Stream tracer tests were utilized in order to determine the degree to which these alterations affected transient storage. Numerical analysis of stream tracer tests suggests that while the relative area of transient storage increased, average residence time of water in storage, and the mass transfer rate of solute between storage and the stream did not change. This suggests that an extensive hyporheic zone may not have been established. Correlations between hydrologic and geomorphic parameters indicate that in-stream storage may have been increased, and quick-exchange hyporheic flowpaths may have been created. (295 pages)
53

A Rosgen Level III Analysis of Two Stream Restoration Projects Near Youngstown, Ohio

Poudel, Rajesh Kumar January 2010 (has links)
No description available.
54

Restaurering av vattendrag för ökad närsaltsretention : Kunskapssammanställning och simulering av rumslig fördelning av åtgärder / Stream restoration for increased nutrient retention : Knowledge compilation and simulation of the spatial distribution of measures

Markström, Julia, Samuelsson, Maja January 2021 (has links)
Eutrofieringen i Östersjön har länge varit ett omfattande miljöproblem, med ökad algblomning, syrebrist och döda bottnar som följd. Dessa problem uppstår då det tillförs ett överskott av närsalterna kväve och fosfor. Detta närsaltsläckage kommer till stor del från mänsklig aktivitet, varav stora mängder kommer från jordbruket.  Syftet med detta projekt är för det första att kartlägga dagens kunskapsläge kring vilka åtgärder som kan implementeras för att minska närsaltstransporten i vattendrag. Vidare syftar projektet till att undersöka hur den rumsliga placeringen av dessa åtgärder påverkar närsaltsretentionen samt hur närsaltsläckagets fördelning påverkar detta. Detta har gjorts genom att bygga upp en modell där åtgärdernas placering, storlek och antal såväl som kväveläckagets fördelning varieras för att studera hur näringsbelastningen till nedströms recipient påverkas. Modelleringen har avgränsats till att endast undersöka våtmarker och kväve.  Resultatet av modelleringen visar att en stor våtmark placerad nära utloppet ger högst total näringsretention. Vidare visar resultatet att både kvävekoncentrationer i vattendragen och retentioner i enskilda våtmarker inom området påverkas av kväveläckagets rumsliga fördelning, vilket tyder på att även detta behöver beaktas för att kunna skydda vattenförekomster inom landskapet. Resultatet visar också på att den bästa våtmarksplaceringen är strax uppströms om den recipient som ska skyddas. / The Baltic Sea suffers from eutrophication, which leads to increased algae growth, affecting the water quality and the surrounding ecosystems. This has been an extensive environmental problem for a long time and the main cause of this problem is excessive inputs of nitrogen and phosphorus. These nutrient inputs occur in great parts due to human activities and a significant proportion originates from agriculture. Non-point sources, such as nutrients lost from agricultural soils, are difficult to locate and consequently it’s hard to implement the right measure in the right place.  One of the objectives of this report is to map out which measures that can be implemented in watercourses to increase the nutrient retention. The report also aims to analyze how the spatial distribution of these measures, as well as the nutrient input, affects the nutrient retention. This has been done by creating a model, where wetlands can be positioned in different places within a catchment area. The model has been limited to only analyze wetlands and nitrogen. The positioning, area and number of the wetlands as well as the nitrogen input was varied in order to analyze how the retention was affected.  The result of this modelling showed that the highest nutrient retention in total was achieved by placing one big wetland close to the outlet of the studied area. Furthermore, the concentration and retention of nitrogen within the area varied when the distribution of the nitrogen input was altered, which indicates that it’s important to analyze this in order to improve the water quality within the landscape. Finally, to obtain the highest efficiency of a wetland, the wetland should be placed just above the recipient it’s intended to protect.
55

Floodplain Hydrology and Biogeochemistry

Jones, Charles Nathaniel 04 September 2015 (has links)
River-floodplain connectivity is defined as the water mediated transfer of materials and energy between a river or stream and its adjacent floodplain. It is generally accepted that restoring and/or enhancing river-floodplain connectivity can reduce the downstream flux of reactive solutes such as nitrogen (N) and phosphorus (P) and thus improve downstream water quality. However, there is little scientific literature to guide ecological engineering efforts which optimize river-floodplain connectivity for solute retention. Therefore, the aim of my dissertation research was to examine feedbacks between inundation hydrology and floodplain biogeochemistry, with an emphasis on analyzing variation experienced along the river continuum and the cumulative effects of river-floodplain connectivity at the basin scale. This was completed through four independent investigations. Field sites ranged from the Atchafalaya River Basin, the largest river-floodplain system in the continental US, to the floodplain of a recently restored headwater stream in Appalachia. We also developed a method to examine river-floodplain connectivity across large- river networks and applied that methodology to US stream network. Largely, our results highlight the role floodwater residence time distributions play in floodplain biogeochemistry. In headwater streams, residence times restrict redox dependent processes (e.g. denitrification) and downstream flushing of reactive solutes is the dominant process. However, in large-river floodplains, redox dependent processes can become solute limited because of prolonged residence times and hydrologic isolation. In these floodplains, the dominant process is often autochthonous solute accumulation. Further, results from our modeling study suggest large-river floodplains have a greater impact on downstream water quality than floodplains associated with smaller streams, even when considering cumulative effects across the entire river network. / Ph. D.
56

Use of physical habitat structure to assess stream suitability for brown trout : a case study of three upland Scottish streams

Neary, James P. January 2006 (has links)
In 2000 the European Union introduced the Water Framework Directive, new legislation that regulates the use of surface waters within the European Community. The goal of this legislation is to protect, enhance and restore all surface waters within the Community to Good Surface Water Status. Good-Status is described as having low levels of anthropogenic distortion in its hydro-morphological and physiochemical components as well as possessing biota that would normally be associated with the type-specific aquatic ecosystem. The assessment of ecosystem status is to be defined by comparisons with intact representative reference sites, by using modelling techniques that define reference conditions, a combination of the two, or expert judgement. As undisturbed aquatic ecosystems are rare or non-existent in Europe the base-line data will have to be defined using the latter methodologies. The aim of this project is to help define reference conditions for lotic systems in Europe based on the physical instream habitat parameters of a resident species. Brown trout (Salmo trutta), a ubiquitous and well studies species endemic to Europe, was used as the target organism to develop the assessment protocol. The project focused on the requirements this species has of aspects of its physical habitat; specifically, its usage of depth, velocity, and substrate. An extensive survey of the scientific literature was used to define the requirements trout has for the three physical parameters at four life stages. These are the spawning, nursery, juvenile and adult-resident life stages. These requirements were expressed as tolerance profiles, which defined suitable, usable and not-suitable habitat. The methodology was demonstrated by evaluating the physical habitat available at six reaches in three small streams, March, Burnhouse and Bin Burns, which drain into the Carron Valley Reservoir in central Scotland. From the perspective of water depth, these streams seem best suited as nursery areas, are less well suited as juvenile habitat, and do not appear to be well matched for adult residents. The assessment of both velocity and substrate indicated that the portion of the study reaches available for use by resident brown trout increased with trout size. The assessment of all three physical habitat parameters at all study reaches found variable portions of the streams suitable for use by spawning trout. When the habitat variables are integrated all stream segments streams seem best suited as nursery and spawning areas. To a lesser extent juvenile trout can use these burns and very little habitat is available for use by adult resident trout. The tolerance profiles that were created in this study are standardized assessment criteria that when compared with stream survey data can produce an appraisal of habitat availability in any fluvial freshwater system that supports populations of brown trout (Salmo trutta). The assessment method can be combined to produce an integrated habitat assessment, using both an index and by the calculation of Froude number, which is a more realistic approach than the assessment of individual habitat parameters as salmonids choose their microhabitat based on multiple factors. This approach allows an investigator to determine the amount and relative portion of useable habitat and to determine the quality of that habitat. Finally, by examining the physical habitat variable that most strongly correlates with the final integrated habitat distribution the individual habitat parameter that is most important to the distribution of physical habitat at a site can be determined. While this technique would certainly benefit from further development it does show potential to aid in physical habitat assessment of trout streams.
57

Dynamics of Channel Complexity and Nitrate Retention in Upper Fanno Creek, Oregon

Bean, Robert Allen 01 January 2012 (has links)
This study investigates the relationship between channel complexity and nutrient spiraling along 31 reaches of an urbanized watershed in Portland, Oregon. Much research shows that urbanization has an effect on watershed hydrology and nutrient loading at the watershed scale for various sized catchments. However, the flux of nutrients over short reaches within a stream channel has been less studied because of the effort and costs associated with fieldwork and subsequent laboratory analysis of the surface water samples. In this study I measure channel complexity and uptake velocity of nitrate to determine if this relationship is indicative of a healthy, functioning stream. I take field measurements and samples to determine the complexity and uptake velocity of each reach. Using ion-selective electrodes, the fluxes of nitrate were measured within each reach; when combined with channel geometry and velocity measurements these measurements allow for the transformation of nitrate fluxes into spiraling metrics. Results show that 18 of the 31 reaches had uptake velocity. Discharge and sinuosity were positively correlated with nitrate uptake velocity. Complexity and nitrate concentration were negatively correlated with nitrate uptake velocity. Grass landcover was positively correlated with nitrate uptake velocity and negatively correlated with nitrate concentration. These results indicate that land use and channel complexity both are related to the in-stream processing of nitrate. The implication of this study is that channel complexity is an important driver of nutrient flux in an urban watershed, and that this technique can be applied in future studies to better characterize water quality of stream channels over short reaches to entire catchments.
58

Map-based Probabilistic Infinite Slope Analysis of the Stephens Creek Watershed, Portland, Oregon

Cole, Ryan Andrew 13 March 2013 (has links)
The Stephens Creek Watershed in southwest Portland, Oregon was chosen by the city as a pilot project for urban stream restoration efforts, and the infiltration of stormwater was identified as a potential restoration strategy. The Stephens Creek Watershed has historically been known to be unstable during high precipitation events (Burns, 1996), and the need to address the response of slope stability to anthropogenically-driven changing groundwater conditions is the focus of this study. Airborne light detection and ranging (LiDAR) and geotechnical data from the City of Portland were employed to create a high resolution (0.84 m2) physics-based probabilistic slope stability model for this watershed, using the map-based probabilistic infinite slope analysis program PISA-m (Haneberg, 2007). Best and worst case models were run using fully dry and fully saturated soil conditions, respectively. Model results indicate that 96.3% of the watershed area had a probability [less than or equal to] 0.25 that the slope factor of safety (FOS) was [less than or equal to] 1 for fully dry conditions, compared to 76.4% for fully saturated conditions. Areas that had a probability [greater than or equal to] 0.25 that the slope factor of safety (FOS) was [less than or equal to] 1 were found to occur mainly along cut/fill slopes as well as within the deeply incised canyons of Stephens Creek and its tributaries. An infiltration avoidance map was derived to define areas that appear to be unsuitable for infiltration. Based on these results, it is recommended that stormwater continues to be directed to existing sewer infrastructure and that the "storm water disconnect" restoration approach not be used by the city.
59

Enhancement of Concretized Streams: Mill Creek

Kordenbrock, Brett Nathan 24 July 2013 (has links)
No description available.
60

Influence of forest fragments on headwater stream ecosystems in agricultural landscapes

Goss, Charles W. 21 May 2014 (has links)
No description available.

Page generated in 0.0894 seconds