331 |
Molekulárně genetické a biochemické studie vybraných dědičných metabolických onemocnění, vývoj a aplikace nových metod. / Molecular genetic and biochemical studies of selected inherited metabolic disorders, development and applications of new methodsMušálková, Dita January 2016 (has links)
Inherited metabolic disorders (IMD) form a diverse group of several hundred different diseases with a relatively high cumulative incidence (stated up to 1:600). They are associated with accumulation of the substrates and lack of the products in specific metabolic pathways, which is caused by deficiency of the enzyme or its activator, or dysfunction of the transport protein. However, the underlying cause is at the DNA level. The grounds for different phenotype manifestation in patients with the same genotype are often not known. During my work at the Institute of Inherited Metabolic Disorders, I designed several new methods for the research of IMD and applied them in the patients and their families. I created procedures for the isolation of lysosomal membranes that are used for the research of lysosomal storage disorders and general properties of lysosomes. Next, I introduced several novel assays for determination of the X-inactivation ratio, which led to a significant increase of informative women. Nowadays, we use these methods in heterozygous women with X-linked diseases in order to study the influence of X-inactivation on the manifestation of the diseases. The cases of a girl with mucopolysaccharidosis type II, a girl with OTC deficiency and a family with the mutation in HPRT1 gene are described...
|
332 |
Effects of Electrostatic Precipitation Dust Control Technologies and Ultraviolet Irradiation on the Inactivation of Pathogenic Bacteria in Commercial Poultry Layer HousesHerkins, Matthew Joseph 27 October 2022 (has links)
No description available.
|
333 |
Experimental and theoretical analysis of X-chromosome inactivation as a paradigm for epigenetic memory and molecular decision-makingMutzel, Verena 19 October 2021 (has links)
X-Chromosom-Inaktivierung (XCI) ist der Mechanismus, den Säuger zur Dosiskompensierung zwischen weiblichen und männlichen Zellen verwenden. XCI wird ausgelöst durch die monoallelische Hochregulation der langen nicht-kodierenden RNA Xist von einem der zwei X-Chromosomen in weiblichen Zellen. Die Xist RNA vermittelt dann das Ausschalten der Gene auf diesem X-Chromosom. Das wirft einige interessante Fragen auf: Wie zählen Zellen ihre X-Chromosomen und stellen sicher, dass genau eines aktiv bleibt? Wie entscheiden sie, welches X-Chromosom aktiv bleibt und welches ausgeschaltet wird? Und wie erinnern sie sich an diese Entscheidung und behalten sie stabil bei durch alle weiteren Zellteilungen?
Mithilfe eines stochastischen Modells zeigen wir, dass diese XCI Regulation prinzipiell durch nur zwei Regulatoren erklärt werden kann: Ein global (in trans) agierender XCI Aktivator und ein lokal (in cis) agierender XCI Repressor. Dieses Netzwerk aus nur zwei Regulatoren kann die Xist Expressionsmuster in verschiedenen Säugerspezies reproduzieren, von der Maus bis zum Mensch. Es sagt außerdem voraus, dass Zellen in der Lage sind, biallelische zu monoallelischer Xist Expression zu korrigieren, eine Vorhersage, für die wir tatsächlich experimentelle Belege finden. Mit einem mechanistischen Modell zeigen wir, dass das cis-Gedächtnis über den Xist Expressionszustand durch Antisense-Transkription zustande kommen könnte. Auf dieser Hypothese aufbauend untersucht der zweite Teil der Arbeit das Potential von Antisense-Transkription, ein lokales Gedächtnis über den Expressionszustand eines Gens zu generieren, genauer. Diese Analyse sagt vorher, dass Antisense-Repression den Expressionszustand eines Lokus tatsächlich für einige Tage stabil erhalten kann. / X-chromosome inactivation (XCI) is the mechanism for dosage compensation between the sexes in mammals. It is initiated through monoallelic upregulation of the long non-coding RNA Xist from one X chromosome, which mediates almost complete transcriptional silencing of this X chromosome. XCI regulation raises intriguing and thus far unanswered questions: How do cells count their X chromosomes and ensure that exactly one stays active? How do they make a mutually exclusive choice for one inactive X chromosome, and how do they then stably maintain this choice throughout subsequent cell divisions?
Using stochastic modeling, we show that XCI onset only requires two regulators: A trans-acting Xist activator that ensures female specificity and a cis-acting Xist repressor that allows stable maintenance of alternative Xist expression states. This two-regulator network can recapitulate Xist expression patterns across different species and makes a novel prediction that is validated experimentally: Cells are able to revert biallelic Xist expression to monoallelic expression. With a mechanistic stochastic model we show that Xist's antisense transcript Tsix might be the cis-acting Xist repressor, uncovering the molecular mechanism behind the stabilization of the alternative Xist expression states. Building upon Tsix' possible functional role in stabilizing alternative Xist expression states on the active and inactive X chromosome, the second part of this thesis investigates the potential of antisense transcription to maintain a transient transcriptional memory. We find that mutual repression between a pair of antisense genes can allow the locus to remember the transcription state it has acquired due to a past signal for several days.
|
Page generated in 0.0859 seconds