Spelling suggestions: "subject:"inclusion monotone"" "subject:"inclusion monotonous""
1 |
Méthode de Newton régularisée pour les inclusions monotones structurées : étude des dynamiques et algorithmes associés / Newton-Like methods for structured monotone inclusions : study of the associated dynamics and algorithmsAbbas, Boushra 20 November 2015 (has links)
Cette thèse est consacrée à la recherche des zéros d'un opérateur maximal monotone structuré, à l'aide de systèmes dynamiques dissipatifs continus et discrets. Les solutions sont obtenues comme limites des trajectoires lorsque le temps t tend vers l'infini. On s'intéressera principalement aux dynamiques obtenues par régularisation de type Levenberg-Marquardt de la méthode de Newton. On décrira aussi les approches basées sur des dynamiques voisines.Dans un cadre Hilbertien, on s'intéresse à la recherche des zéros de l'opérateur maximal monotone structuré M = A + B, où A est un opérateur maximal monotone général et B est un opérateur monotone Lipschitzien. Nous introduisons des dynamiques continues et discrètes de type Newton régularisé faisant intervenir d'une façon séparée les résolvantes de l'opérateur A (implicites), et des évaluations de B (explicites). A l'aide de la représentation de Minty de l'opérateur A comme une variété Lipschitzienne, nous reformulons ces dynamiques sous une forme relevant du théorème de Cauchy-Lipschitz. Nous nous intéressons au cas particulier où A est le sous différentiel d'une fonction convexe, semi-continue inférieurement, et propre, et B est le gradient d'une fonction convexe, différentiable. Nous étudions le comportement asymptotique des trajectoires. Lorsque le terme de régularisation ne tend pas trop vite vers zéro, et en s'appuyant sur une analyse asymptotique de type Lyapunov, nous montrons la convergence des trajectoires. Par ailleurs, nous montrons la dépendance Lipschitzienne des trajectoires par rapport au terme de régularisation.Puis nous élargissons notre étude en considérant différentes classes de systèmes dynamiques visant à résoudre les inclusions monotones gouvernées par un opérateur maximal monotone structuré M = $partialPhi$+ B, où $partialPhi$ désigne le sous différentiel d'une fonction convexe, semicontinue inférieurement, et propre, et B est un opérateur monotone cocoercif. En s'appuyant sur une analyse asymptotique de type Lyapunov, nous étudions le comportement asymptotique des trajectoires de ces systèmes. La discrétisation temporelle de ces dynamiques fournit desalgorithmes forward-backward (certains nouveaux ).Finalement, nous nous intéressons à l'étude du comportement asymptotique des trajectoires de systèmes dynamiques de type Newton régularisé, dans lesquels on introduit un terme supplémentaire de viscosité évanescente de type Tikhonov. On obtient ainsi la sélection asymptotique d'une solution de norme minimale. / This thesis is devoted to finding zeroes of structured maximal monotone operators, by using discrete and continuous dissipative dynamical systems. The solutions are obtained as the limits of trajectories when the time t tends towards infinity.We pay special attention to the dynamics that are obtained by Levenberg-Marquardt regularization of Newton's method. We also revisit the approaches based on some related dynamical systems.In a Hilbert framework, we are interested in finding zeroes of a structured maximal monotone operator M = A + B, where A is a general maximal monotone operator, and B is monotone and locally Lipschitz continuous. We introduce discrete and continuous dynamical systems which are linked to Newton's method. They involve separately B and the resolvents of A, and are designed to splitting methods. Based on the Minty representation of A as a Lipschitz manifold, we show that these dynamics can be formulated as differential systems, which are relevant to the Cauchy-Lipschitz theorem. We focus on the particular case where A is the subdifferential of a convex lower semicontinuous proper function, and B is the gradient of a convex, continuously differentiable function. We study the asymptotic behavior of trajectories. When the regularization parameter does not tend to zero too rapidly, and by using Lyapunov asymptotic analysis, we show the convergence of trajectories. Besides, we show the Lipschitz continuous dependence of the solution with respect to the regularization term.Then we extend our study by considering various classes of dynamical systems which aim at solving inclusions governed by structured monotone operators M = $partialPhi$+ B, where $partialPhi$ is the subdifferential of a convex lower semicontinuous function, and B is a monotone cocoercive operator. By a Lyapunov analysis, we show the convergence properties of the orbits of these systems. The time discretization of these dynamics gives various forward-backward splittingmethods (some new).Finally, we focus on the study of the asymptotic behavior of trajectories of the regularized Newton dynamics, in which we introduce an additional vanishing Tikhonov-like viscosity term.We thus obtain the asymptotic selection of the solution of minimal norm.
|
2 |
Problèmes d'inclusions couplées : Éclatement, algorithmes et applicationsBriceno-Arias, Luis M. 27 May 2011 (has links) (PDF)
Cette thèse est consacrée à la résolution de problèmes d'analyse non linéaire multivoque dans lesquels plusieurs variables interagissent. Le problème générique est modélisé par une inclusion vis-à-vis d'une somme d'opérateurs monotones sur un espace hilbertien produit. Notre objectif est de concevoir des nouveaux algorithmes pour résoudre ce problème sous divers jeux d'hypothèses sur les opérateurs impliqués et d'étudier le comportement asymptotique des méthodes élaborées. Une propriété commune aux algorithmes est le fait qu'ils procèdent par éclatement en ceci que les opérateurs monotones et, le cas échéant, les opérateurs linéaires constitutifs du modèle agissent indépendamment au sein de chaque itération. Nous abordons en particulier le cas où les opérateurs monotones sont des sous-différentiels de fonctions convexes, ce qui débouche sur de nouveaux algorithmes de minimisation. Les méthodes proposées unifient et dépassent largement l'état de l'art. Elles sont appliquées aux inclusions monotones composites en dualité, aux problèmes d'équilibre, au traitement du signal et de l'image, à la théorie des jeux, à la théorie du trafic, aux équations d'évolution, aux problèmes de meilleure approximation et à la décomposition de domaine dans les équations aux dérivées partielles.
|
3 |
Inclusions Monotones en Dualité et ApplicationsVu, Bang Cong 15 April 2013 (has links) (PDF)
Le but de cette thèse est de développer de nouvelles techniques d'éclatement d'opérateurs multivoques pour résoudre des problèmes d'inclusion monotone structurés dans des espaces hilbertiens. La dualité au sens des inclusions monotones tient une place essentielle dans ce travail et nous permet d'obtenir des décompositions qui ne seraient pas disponibles via une approche purement primale. Nous développons plusieurs algorithmes à métrique fixe ou variable dans un cadre unifié, et montrons en particulier que de nombreuses méthodes existantes sont des cas particuliers de la méthode explicite--implicite formulée dans des espaces produits adéquats. Les méthodes proposées sont appliquées aux problèmes d'inéquations variationnelles, aux problèmes de minimisation, aux problèmes inverses, aux problèmes de traitement du signal, aux problèmes d'admissibilité et aux problèmes de meilleure approximation. Dans un second temps, nous introduisons une notion de suite quasi-fejérienne à métrique variable et analysons ses propriétés asymptotiques. Ces résultats nous permettent d'obtenir des extensions de méthodes d'éclatement aux problèmes où la métrique varie à chaque itération.
|
Page generated in 0.1136 seconds