• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 10
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 24
  • 24
  • 24
  • 14
  • 9
  • 7
  • 6
  • 6
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

An examination of analysis and optimization procedures within a PBSD framework

Cott, Andrew January 1900 (has links)
Master of Science / Department of Architectural Engineering and Construction Science / Kimberly W. Kramer / The basic tenets of performance based seismic design (PBSD) are introduced. This includes a description of the underlying philosophy of PBSD, the concept of performance objectives, and a description of hazard levels and performance indicators. After establishing the basis of PBSD, analysis procedures that fit well within the PBSD framework are introduced. These procedures are divided into four basic categories: linear static, linear dynamic, nonlinear static, and nonlinear static. Baseline FEMA requirements are introduced for each category. Each analysis category is then expanded to include a detailed description of and variations on the basic procedure. Finally, optimization procedures that mesh well with a PBSD framework are introduced and described. The optimization discussion focuses first on the solution tools needed to effectively execute a PBSD multi-objective optimization procedure, namely genetic and evolutionary strategies algorithms. Next, multiple options for defining objective functions and constraints are presented to illustrate the versatility of structural optimization. Taken together, this report illustrates the unique aspects of PBSD. As PBSD moves to the forefront of design methodology, the subjects discussed serve to familiarize engineers with the advantages, possibilities, and finer workings of this powerful new design methodology.
12

Seismic Analysis of Steel Wind Turbine Towers in the Canadian Environment

Nuta, Elena 06 April 2010 (has links)
The seismic response of steel monopole wind turbine towers is investigated and their risk is assessed in the Canadian seismic environment. This topic is of concern as wind turbines are increasingly being installed in seismic areas and design codes do not clearly address this aspect of design. An implicit finite element model of a 1.65MW tower was developed and validated. Incremental dynamic analysis was carried out to evaluate its behaviour under seismic excitation, to define several damage states, and to develop a framework for determining its probability of damage. This framework was implemented in two Canadian locations, where the risk was found to be low for the seismic hazard level prescribed for buildings. However, the design of wind turbine towers is subject to change, as is the design spectrum. Thus, a methodology is outlined to thoroughly investigate the probability of reaching predetermined damage states under seismic loading for future considerations.
13

Seismic Analysis of Steel Wind Turbine Towers in the Canadian Environment

Nuta, Elena 06 April 2010 (has links)
The seismic response of steel monopole wind turbine towers is investigated and their risk is assessed in the Canadian seismic environment. This topic is of concern as wind turbines are increasingly being installed in seismic areas and design codes do not clearly address this aspect of design. An implicit finite element model of a 1.65MW tower was developed and validated. Incremental dynamic analysis was carried out to evaluate its behaviour under seismic excitation, to define several damage states, and to develop a framework for determining its probability of damage. This framework was implemented in two Canadian locations, where the risk was found to be low for the seismic hazard level prescribed for buildings. However, the design of wind turbine towers is subject to change, as is the design spectrum. Thus, a methodology is outlined to thoroughly investigate the probability of reaching predetermined damage states under seismic loading for future considerations.
14

Parameters Influencing Seismic Structural Collapse with Emphasis on Vertical Accelerations and the Possible Related Risks for New and Existing Structures in the Central and Eastern United States

Spears, Paul Wesley 15 June 2004 (has links)
This thesis presents the results of basically two separate studies. The first study involved identifying structural and earthquake parameters that influenced seismic structural collapse. The parameter study involved nonlinear dynamic analyses using single-degree-of-freedom (SDOF) bilinear models. Four parameters were associated with the SDOF models — the lateral stiffness, the post-yield stiffness ratio, the yield strength, and the stability ratio (P-Delta effects). Then, three parameters were associated with the ground motions — the records themselves, the lateral ground motion scales, and the vertical ground motion scales. From the parameter study, it was found that the post-yield stiffness ratio augmented by P-Delta effects (rp) in conjunction with the ductility demand was the best predictor of collapse. These two quantities include all four structural parameters and the seismic displacement demands. It was also discovered in the parameter study that vertical accelerations did not significantly influence lateral displacements unless a given combination of model and earthquake parameters was altered such that the model was on the verge of collapsing. The second study involved Incremental Dynamic Analysis (IDA) using bilinear SDOF models representative of low rise buildings in both the Western United States (WUS) and the Central and Eastern United States (CEUS). Models were created that represented three, five, seven, and nine story buildings. Five sites from both the WUS and CEUS were used. Four different damage measures were used to assess the performance of the buildings. The IDA study was primarily interested in the response of the structures between the earthquake intensities that have a 10 percent probability of occurring in 50 years (10/50) and 2 percent probability of occurring in 50 years (2/50). The results showed that all structures could be in danger of severe damage and possible collapse, depending on which damage measure and which earthquake was used. It is important to note, though, that the aforementioned is based on a damage-based collapse rule. The damage-based rule results were highly variable. Using an intensity-based collapse rule, proved to be more consistent. Due to the nature of the bilinear models, only those structures with negative rp values ever collapsed using an intensity-based collapse rule. Most of the WUS models had positive rp values and many of the CEUS models had negative rp values. While many of the CEUS structures had negative rp values, which made them prone to collapse, most of the CEUS structures analyzed did not collapse at the 2/50 intensity. The reason was that the periods of the CEUS models were much longer than the approximate periods that were required to determine the strengths. Consequently, the strength capacity of most of the CEUS models was much greater than the seismic strength demands. While many of the CEUS models did have sudden collapses due to the large negative rp values, the collapses happened at intensities that were generally much higher than the 2/50 event. In the IDA, it was also shown that vertical accelerations can significantly affect the ductility demands of a model with a negative rp post-yield stiffness ratio as the earthquake intensity approaches the collapse intensity. Since IDA is concerned with establishing collapse limit states, it seems that the most accurate collapse assessments would include vertical accelerations. / Master of Science
15

Evaluation of the Seismic Performance of Steel Moment Frames with Partially-Restrained Connections

Marucci, Derek A. January 2015 (has links)
No description available.
16

Structural System Reliability with Application to Light Steel-Framed Buildings

Chatterjee, Aritra 31 January 2017 (has links)
A general framework to design structural systems for a system-reliability goal is proposed. Component-based structural design proceeds on a member to member basis, insuring acceptable failure probabilities for every single structural member without explicitly assessing the overall system safety, whereas structural failure consequences are related to the whole system performance (the cost of a building or a bridge destroyed by an earthquake) rather than a single beam or column failure. Engineering intuition tells us that the system is safer than each individual component due to the likelihood of load redistribution and al- ternate load paths, however such conservatism cannot be guaranteed without an explicit system-level safety check. As a result, component-based structural designs can lead to both over-conservative components and a less-than-anticipated system reliability. System performance depends on component properties as well as the load-sharing network, which can possess a wide range of behaviors varying from a dense redundant system with scope for load redistribution after failure initiates, to a weakest-link type network that fails as soon as the first member exceeds its capacity. The load-sharing network is characterized by its overall system reliability and the system-reliability sensitivity, which quantifies the change in system safety due to component reliability modifications. A general algorithm is proposed to calculate modified component reliabilities using the sensitivity vector for the load-sharing network. The modifications represent an improvement on the structural properties of more critical components (more capacity, better ductility), and provide savings on less important members which do not play a significant role. The general methodology is applied to light steel-framed buildings under seismic loads. The building is modeled with non-linear spring elements representing its subsystems. The stochastic response of this model under seismic ground motions provides load-sharing, system reliability and sensitivity information, which are used to propose target diaphragm and shear wall reliability to meet a building reliability goal. Finally, diaphragm target reliability is used to propose modified component designs using stochastic simulations on geometric and materially non-linear finite-element models including every individual component. This material is based upon work supported by the National Science Foundation under Grant Nos. 1301001 (Virginia Tech), 1301033 (University of Massachusetts, Amherst) and 1300484 (Johns Hopkins University). Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author and do not necessarily re ect the views of the National Science Foundation. The author is grateful to the industry partner, the American Iron and Steel Institute, for their cooperation. / Ph. D.
17

漸増動的解析(IDA)に基づく既設長大橋の耐震性能評価に関する研究

木田, 秀人 25 November 2014 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(工学) / 甲第18651号 / 工博第3960号 / 新制||工||1609(附属図書館) / 31565 / 京都大学大学院工学研究科社会基盤工学専攻 / (主査)教授 杉浦 邦征, 教授 白土 博通, 教授 五十嵐 晃 / 学位規則第4条第1項該当 / Doctor of Philosophy (Engineering) / Kyoto University / DFAM
18

Seismic damage avoidance design of warehouse buildings constructed using precast hollow core panels

Abdul Hamid, Nor Hayati January 2006 (has links)
Precast prestressed hollow core units are commonly used in the construction of the flooring system in precast buildings. These units without transverse reinforcement bars are designed to resist seismic loading as replacement for fixed-base precast wall panels in the construction of warehouse buildings. Thus, this research seeks to investigate the seismic performance of the units constructed as a subassemblage (single wall) subjected to biaxial loading and as a superassemblage (multi-panel) subjected to quasi-static lateral loading. A design procedure for warehouse building using precast hollow core walls under Damage Avoidance Design (DAD) is proposed. In addition, a risk assessment under Performance-Based Earthquake Engineering (PBEE) is evaluated using the latest computational tool known as Incremental Dynamic Analysis (IDA). A comparative risk assessment between precast hollow core walls and fixed-base monolithic precast wall panels is also performed. Experimental results demonstrate that rocking precast hollow core walls with steelarmouring do not suffer any non-structural damage up to 2.0% drift and minor structural damage at 4.0% drift. Results revealed that the wall with unbonded fuse-bars and 50% initial prestressing of unbonded tendons performed the best compared with other types of energy dissipators. Furthermore, 12mm diameter of fuse-bar is recommended as there is no uplifting of the foundation beam during ground shaking. Hence, this type of energy dissipator is used for the construction of seismic wall panels in warehouse buildings. One of the significant findings is that the capacity reduction factor (Ø ) which relates to global uncertainty of seismic performance is approximately equal to 0.6. This value can be used to estimate the 90th percentile of the structures without performing IDA. Therefore, the structural engineers are only required to compute Rapid-IDA curve along with the proposed design procedure.
19

Comparative performance of ductile and damage protected bridge piers subjected to bi-directional earthquake attack

Mashiko, Naoto January 2006 (has links)
Incremental Dynamic Analysis (IDA) procedures are advanced and then applied to a quantitative risk assessment for bridge structures. This is achieved by combining IDA with site-dependent hazard-recurrence relations and damage outcomes. The IDA procedure is also developed as a way to select a critical earthquake motion record for a one-off destructive experiment. Three prototype bridge substructures are designed according to the loading and detailing requirements of New Zealand, Japan and Caltrans codes. From these designs 30 percent reduced scale specimens are constructed as part of an experimental investigation. The Pseudodynamic test is then to control on three specimens using the identified critical earthquake records. The results are presented in a probabilistic riskbased format. The differences in the seismic performance of the three different countries' design codes are examined. Each of these current seismic design codes strive for ductile behaviour of bridge substructures. Seismic response is expected to be resulting damage on structures, which may threaten post-earthquake serviceability. To overcome this major performance shortcoming, the seismic behaviour under bi-directional lateral loading is investigated for a bridge pier designed and constructed in accordance with Damage Avoidance principles. Due to the presence of steel armoured rocking interface at the base, it is demonstrated that damage can be avoided, but due to the lack of hysteresis it is necessary to add some supplemental damping. Experimental results of the armoured rocking pier under bi-directional loading are compared with a companion ductile design specimen.
20

Seismic probabilistic safety assessment and risk control of nuclear power plants in Northwest Europe

Medel Vera, Carlos Pablo January 2016 (has links)
Nuclear power plays a crucial role in energy supply in the world: around 15% of the electricity generated worldwide is provided from nuclear stations avoiding around 2.5 billion tonnes of CO2 emissions. As of January 2016, 442 reactors that generated 380+ GW were in operation and 66 new reactors were under construction. The seismic design of new nuclear power plants (NPPs) has gained much interest after the high-profile Fukushima Dai-ichi accident. In the UK, a tectonically stable continental region that possesses medium-to-low seismic activity, strong earthquakes capable of jeopardising the structural integrity of NPPs, although infrequent, can still occur. Despite that no NPP has been built in Great Britain after 1995, a New Build Programme intended to build 16 GW of new nuclear capacity by 2030 is currently under way. This PhD project provides a state-of-the-art framework for seismic probabilistic safety assessment and risk control of NPPs in Northwest Europe with particular application to the British Isles. It includes three progressive levels: (i) seismic input, (ii) seismic risk analysis, and (iii) seismic risk control. For seismic input, a suitable model to rationally define inputs in the context of risk assessments is proposed. Such a model is based on the stochastic simulation of accelerograms that are compatible with seismic scenarios defined by magnitude 4 < Mw < 6.5, epicentral distance 10 km < Repi < 100 km, and different types of soil (rock, stiff soil and soft soil). It was found to be a rational approach that streamlines the simulation of accelerograms to conduct nonlinear dynamic analyses for safety assessments. The model is a function of a few variables customarily known in structural engineering projects. In terms of PGA, PGV and spectral accelerations, the simulated accelerograms were validated by GMPEs calibrated for the UK, Europe and the Middle East, and other stable continental regions. For seismic risk analysis, a straightforward and logical approach to probabilistically assess the risk of NPPs based on the stochastic simulation of accelerograms is studied. It effectively simplifies traditional approaches: for seismic inputs, it avoids the use of selecting/scaling procedures and GMPEs; for structural outputs, it does not use Monte Carlo algorithms to simulate the damage state. However, it demands more expensive computational resources as a large number of nonlinear dynamic analyses are needed. For seismic risk control, strategies to control the risk using seismic protection systems are analysed. This is based on recent experience reported elsewhere of seismically protected nuclear reactor buildings in other areas of medium-to-low seismic activity. Finally, a scenario-based incremental dynamic analysis (IDA) is proposed aimed at the generation of surfaces for unacceptable performance of NPPs as function of earthquake magnitude and distance. It was found that viscous-based devices are more efficient than hysteretic-based devices in controlling the seismic risk of NPPs in the UK. Finally, using the proposed scenario-based IDA, it was found that when considering all controlling scenarios for a representative UK nuclear site, the risk is significantly reduced ranging from 3 to 5 orders of magnitude when using viscous-based devices.

Page generated in 0.1103 seconds