1 |
Thermophysical Properties of Aqueous Solutions Used as Secondary Working FluidsMelinder, Åke January 2007 (has links)
Secondary working fluids (secondary refrigerants, heat transfer fluids, antifreezes, brines) have long been used in various indirect re-frigeration and heat pump systems. Aqueous solutions (water solu-tions) have long been used as single phase (liquid only) secondary working fluids for cooling in supermarkets, ice rinks, heat recovery systems, heat pumps and other applications. However, aqueous solutions are increasingly used also for freezers in supermarkets and other applications in low temperature refrigeration. Of importance when comparing different secondary working fluids for indirect systems are the following basic thermophysical properties: freezing point, density, viscosity, specific heat, and thermal conductivity. Reliable data of these properties are needed to choose suitable fluid and to make technical calculations of an indirect refrigeration or heat pump system. The main intention of this work has been to select thermophysical property data with good or acceptable technical accuracy of a number of aqueous solutions that can be used by the refrigeration and heat pump industry, rather than focusing on a limited number of property values or scientifically very accurate measuring techniques. A thorough literature search was in view of this made to find the most reliable property values of aqueous solutions. Detailed literature references are given for thermo-physical properties of the following aqueous solutions, without other additives: Ethylene and propylene glycol, ethyl and methyl alcohol, glycerol, ammonia, potassium carbonate, calcium, lithium, magnesium and sodium chlorides as well as potassium acetate and potassium formate. Some laboratory measurements were made of most of the fluid types when literature values were incomplete or deemed unreliable. Methods used are briefly described and results are given. Much of the work was reported on in the Engineering Licentiate Thesis: Thermophysical properties of liquid secondary refrigerants, A Critical Review on Literature References and Laboratory Measure-ments (Melinder 1998a). That material forms the basis for the charts and tables used in the IIR-publication Thermophysical properties of liquid secondary refrigerants (Melinder, 1997). The present thesis reports on an update made since 1998, including re-view work done on two additional fluids not covered in Melinder (1998a). The thesis describes how the selection of property values results in tables and charts intended for the industry. Coefficients for poly-nomial equations are generated from these property values using a Matlab program and this material is intended as a useful tool for computer treatment. Aqueous solution of ethyl alcohol is used as example to see how this process is made. This choice of fluid can also be seen as a test of this method, as the basic thermophysical properties of aqueous solutions of ethyl alcohol present more chal-lenges than the other fluids examined. A comparison is made of a few types of aqueous solutions used as secondary working fluids for two types of applications. The first example is bedrock heat pumps and the second is cooling cabinets in a supermarket. An effort is made to see how the additive con-centration affects the thermal performance. Most aqueous solutions used as single-phase secondary fluids can also be used as ice slurry, a fluid consisting of liquid and ice where small ice crystals are produced, usually with some type of ice generator. The ice crystals are then transported to the cooling object from which heat is removed when ice crystals melt. This results in less temperature change in the cooling object and makes it also possible to reduce the volume flow rate and to use smaller pipe dimensions in the system. In order to choose a secondary fluid for ice slurry use and to make correct technical calculations of the ice slurry system there is a need to examine and evaluate thermo-physical properties and other aspects of ice and of the aqueous solution used. For dimensioning purposes it is of interest to estimate ice mass fraction and enthalpy values and enthalpy-phase diagrams can serve that purpose. This thesis presents enthalpy-phase diagrams made by author that besides isotherms contain lines with ice fraction and lines connecting enthalpies at freezing point and 1, 2, etc. to 10 K below the freezing point curve. / QC 20100609
|
2 |
Energy Usage in Supermarkets - Modelling and Field MeasurementsArias, Jaime January 2005 (has links)
This thesis investigates a special type of energy system, namely energy use in supermarkets through modelling, simulations and field studies. A user-friendly computer program, CyberMart, which calculates the total energy performance of a supermarket, is presented. The modelling method described in this thesis has four phases: the first phase is the de-velopment of a conceptual model that includes its objectives, the envi-ronment and the components of the system, and their interconnections. The second phase is a quantitative model in which the ideas from the conceptual model are transformed into mathematical and physical rela-tionships. The third phase is an evaluation of the model with a sensitivity analysis of its predictions and comparisons between the computer model and results from field measurements. The fourth phase is the model ap-plication in which the computer model answers questions identified in the beginning of the modelling process as well as other questions arising throughout the work. Field measurements in seven different supermarkets in Sweden were car-ried out to: (i) investigate the most important parameters that influence energy performance in supermarkets, (ii) analyse the operation of new system designs with indirect system implementation in Sweden during recent years, and (iii) validate the computer model. A thorough sensitivity analysis shows a total sensitivity of 5.6 %, which is a satisfactory result given a 10% change in the majority of input parame-ters and assumptions, with the exception of outdoor temperatures and solar radiation that were calculated as extreme values in METEO-NORM. Comparisons between measurements and simulations in five supermarkets also show a good agreement. Measurements and simula-tion results for a whole year were not possible due to lack of data. CyberMart opens up perspectives for designers and engineers in the field by providing innovative opportunities for assessment and testing of new energy efficient measures but also for evaluation of different already-installed system designs and components. The implementation of new energy-saving technologies in supermarkets requires an extensive inte-grated analysis of the energy performances of the refrigeration system, HVAC system, lighting, equipment, and the total energy usage. This analysis should be done over a long period, to evaluate and compare the real energy performance with the theoretical values calculated by Cyber-Mart. / QC 20100330
|
Page generated in 0.0687 seconds