Spelling suggestions: "subject:"indium gallium nitride"" "subject:"indium gallium nitrided""
1 |
Localization, disorder, and polarization fields in wide-gap semiconductor quantum wellsMayrock, Oliver 18 January 2001 (has links)
In der vorliegenden Arbeit werden verschiedene Aspekte des Einflusses von Lokalisation, Unordnung und Polarisationsfeldern auf Elektron-Loch Zustände in Quantengräben (QWs von engl. quantum wells) aus Halbleitern mit großer Bandlücke theoretisch untersucht. Unter Verwendung eines Schwerpunktseparationsansatzes wird das Verhalten von QW Exzitonen und Biexzitonen im Grenzfall schwacher Lokalisation beschrieben. Es zeigt sich, daß die Lokalisationsenergie des Biexzitons mehr als doppelt so groß ist wie die des Exzitons. Dies wird verursacht durch ein universelles Gesetz der Lokalisation in schwachen zwei-dimensionalen Potentialen, welches lediglich durch das "Potentialvolumen" und die Masse des lokalisierten Teilchens bestimmt wird. Ein einfaches Modell des QW Biexzitons wird entwickelt, dessen Ergebnisse gut mit jenen übereinstimmen, die man mit Hilfe eines aufwendigeren numerischen Modells erhält. Der Grenzfall starker Lokalisation von QW Exzitonen und höheren Exzitonenkomplexen wird mittels einer Dichtefunktionalrechnung untersucht. Es wird gezeigt, daß Zustände bis mindestens zum X4 in den nm-großen Potentialminima lokalisieren können, die durch Phasenseparation in (In,Ga)N/GaN QWs enstehen. Es wird das Übergangsspektrum des sukzessiven Zerfalls eines lokalisierten X4 berechnet. Auf Grundlage der selbstkonsistenten Lösung von Poisson- und Schrödinger-Gleichung wird der Einfluß des Probendesigns von (In,Ga)N/GaN QW-Strukturen auf den makroskopischen Verlauf des Polarisationsfeldes in Wachstumsrichtung und somit auf optische Übergangsenergie und Oszillatorstärke systematisch untersucht. Besondere Bedeutung kommt dabei der Abschirmung der Felder durch Raumladungszonen zu. Es wird gezeigt, daß die Position des QW bezüglich einer ausgedehnten Oberflächen-Verarmungszone - die in n-dotierten, Ga-polarisierten Proben auftritt - erheblichen Einfluß auf Übergangsenergie und Oszillatorstärke hat. Durch die räumliche Variation der Polarisationsfeldstärke in dieser Verarmungszone kann das optische Übergangsspektrum eines Mehrfach-QW Schultern oder mehrere Maxima aufweisen. Indium Oberflächen-Segregation ruft eine Blauverschiebung der Übergangsenergie hervor, die bis zu einem Drittel der vom Polarisationsfeld verursachten quantum confined Stark-Verschiebung kompensiert. Diese Blauverschiebung wird von einer Verringerung des Elektron-Loch Überlapps begleitet. Die Polarisationsfelder in (In,Ga)N/GaN Mehrfach-QWs verschmieren das stufenförmige Einteilchen-Absorptionsspektrum. Durch die Aufhebung der näherungsweisen Diagonalität von Inter-Subband Übergängen und durch die Miniband-Dispersion in höheren, gekoppelten Zuständen haben diese Felder, neben dem Beitrag von Potentialfluktuationen, einen entscheidenden Einfluß auf die Form des Absorptionsspektrums. Ein in der Literatur diskutierter Mechanismus, der allein durch Polarisationsfelder eine Verbreiterung optischer Spektren hervorruft, kann nicht bestätigt werden. Unter Annahme einer unkorrelierten Zusammensetzung von (In,Ga)N und einer lateral korrelierten Grenzflächenrauhigkeit von einer Monolage in jeder Grenzfläche zeigt die spektrale Breite des Exzitonen-Schwerpunktpotentials eine Verschmälerung mit zunehmendem Feld. Diese wird verursacht durch das Eindringen der Teilchen in die binären Barrieren und durch ein vergrößertes Exzitonenvolumen. Im Fall einer langreichweitigen Grenzfächenrauhigkeit findet man eine Aufspaltung des Spektrums in einzelne Linien. / In this thesis, various aspects of the influence of localization, disorder, and polarization fields on electron-hole states in wide-gap semiconductor quantum wells (QWs) are investigated theoretically. A theoretical treatment of quantum well exciton and biexciton states in the limit of weak localization is presented, using a center-of-mass separation ansatz. It shows that the localization energy of the biexciton is more than twice as large as that of the exciton due to the universal behaviour of localization in weak two-dimensional potentials which is ruled only by the potential "volume" and the mass of the localized particle. A useful simple model of the QW biexciton wavefunction is developed which provides good agreement with the results obtained with an extensive numerical solution. The limit of strong localization of QW excitons and higher exciton complexes is investigated with a density functional calculation. It is demonstrated that states at least up to X4 may localize in nm-scale potential boxes caused by indium phase separation in (In,Ga)N/GaN QWs. The transition spectrum of the successive recombination of a localized X4 is calculated. A systematic investigation of the influence of the sample design of (In,Ga)N/GaN QW structures on optical transition energy and oscillator strength reveals the importance of space charge layers with regard to screening of polarization fields along the QW-axis. Based on a self-consistent solution of the Schrödinger-Poisson equations, the overall situation of the macroscopic spontaneous and piezoelectric polarization fields is discussed in dependence on various substantial sample parameters. It is found that the position of a QW in the sample with respect to an extended surface depletion layer - which is shown to exist in n-type Ga-face grown material - severely affects transition energy and electron-hole overlap. Due to the spatial variation of the field strength in this surface depletion layer, the optical transition spectrum of a Ga-face grown multiple-QW can display shoulders or even a multiple-peak structure. Indium surface segregation results in a blueshift of the transition energy compensating up to one third of the quantum confined Stark shift produced by the polarization field. This blueshift is accompanied by a decrease of the electron-hole overlap. Polarization fields in (In,Ga)N/GaN multiple-QWs result in a smoothing of the step-like single-particle absorption spectrum. Apart from the contribution of compositional fluctuations, the fields have significant influence on the shape of the spectrum via the abrogation of the nearly diagonality of inter-subband transitions and via the mini-band dispersion of higher coupled states in case of a periodic structure. A line broadening-mechanism due to polarization fields in (In,Ga)N/GaN QWs, as sometimes discussed in literature, could not be confirmed. Assuming uncorrelated (In,Ga)N alloy and in-plane-correlated interface roughness of one monolayer in each interface, the calculation of the spectral width of the QW exciton center-of-mass potential yields a narrowing with increasing average field. This is a result of the penetration of the carriers into the barriers and of an increasing exciton volume. In case of a long-range interface roughness, a splitting of the spectrum into individual lines can be predicted.
|
Page generated in 0.0837 seconds