• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 101
  • 29
  • 18
  • 17
  • 8
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 206
  • 206
  • 205
  • 160
  • 82
  • 44
  • 37
  • 36
  • 34
  • 34
  • 27
  • 25
  • 24
  • 24
  • 23
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
91

iPS cells from Chediak-Higashi syndrome patients recapitulate the giant granules in myeloid cells / 患者由来iPS細胞を用いたチェディアック・東症候群のミエロイド細胞における病態再現

Oh, Shigeharu 25 September 2023 (has links)
京都大学 / 新制・論文博士 / 博士(医学) / 乙第13569号 / 論医博第2295号 / 新制||医||1068(附属図書館) / 京都大学大学院医学研究科医学専攻 / (主査)教授 濵﨑 洋子, 教授 生田 宏一, 教授 滝田 順子 / 学位規則第4条第2項該当 / Doctor of Medical Science / Kyoto University / DFAM
92

Novel calmodulin variant p.E46K associated with severe CPVT produces robust arrhythmogenicity in human iPSC-derived cardiomyocytes / 重症CPVTを引き起こす新規カルモジュリン変異p.E46Kは、ヒトiPS細胞由来心筋細胞において重度な催不整脈性を示す

Gao, Jingshan 25 September 2023 (has links)
京都大学 / 新制・課程博士 / 博士(医学) / 甲第24878号 / 医博第5012号 / 新制||医||1068(附属図書館) / 京都大学大学院医学研究科医学専攻 / (主査)教授 萩原 正敏, 教授 湊谷 謙司, 教授 江藤 浩之 / 学位規則第4条第1項該当 / Doctor of Medical Science / Kyoto University / DFAM
93

Characterization of Human Spinal Cord Stem Cells to Improve the Translation of Cell Therapies for Spinal Cord Injury

Galuta, Ahmad 06 November 2023 (has links)
Stem cell treatments for spinal cord injury (SCI) are effective in pre-clinical animal model research but not yet for humans. Two promising stem cell repair strategies involve (1) endogenous neural stem/progenitor cells (NSPCs) and (2) induced pluripotent stem cells (iPSCs). Delineating species differences in spinal cord NSPC biology is essential to inform human SCI endogenous regeneration and repair. Understanding the phenotypic differences between iPSC-derived NSPCs and primary spinal cord NSPCs would also improve the clinical application of iPSC-derived NSPC therapy in human SCI. To directly compare the molecular and functional attributes of spinal cord NSPCs between humans and animal models of SCI, we designed an in vitro model that allows the characterization of primary human, pig, and rat NSPCs under identical conditions. We found an enrichment of transcription factors in NSPCs of either species that may underlie their differentiation and proliferation potentials. Specifically, human NSPCs are neurogenic, whereas pig and rat NSPCs are gliogenic. Also, the proliferation rate of human and pig NSPCs is less than rat NSPCs. Subsequently, we expanded our in vitro model to examine the responses of NSPCs to inflammation and regenerative factors. Surprisingly, inflammation had induced glial scarring mechanisms from pig and rat NSPCs but potentiated neurogenesis of human NSPCs. We also found species-specific responses to regenerative factors that depend on the type of factor used, concentration, and duration of treatment. To assess the extent that iPSC-derived NSPCs phenocopy primary spinal cord NSPCs, we created iPSC-derived NSPCs with a previously reported brain or spinal cord phenotype and directly compared them with isogenic primary NSPCs. We found that iPSC-derived NSPCs exhibit an earlier developmental stage and a greater proliferation rate. We also found that primary NSPCs possess a unique differentiation potential and regional polarity along the rostral-caudal and dorsoventral axes. In summary, we discovered that species differences in NSPC biology exist between human and animal primary spinal cord NSPCs and that iPSC-derived NSPCs do not recapitulate the transcriptional nor functional attributes of primary spinal cord NSPCs. This thesis highlights the translational gap between pre-clinical research and the clinical application of stem cell treatments that target endogenous NSPCs or transplant iPSC-derived NSPCs.
94

Understanding the Cellular Mechanisms of the Leukocyte Adhesion Deficiency Type III Disorder with the Use of Patient Induced Pluripotent Stem Cells

Chai, Yi Wen 08 December 2014 (has links)
No description available.
95

DIRECTION OF INDUCED PLURIPOTENT STEM CELL DIFFERENTIATION BY ENDOTHELIAL CELL SECRETOME

DiVincenzo, Lola S. 07 August 2015 (has links)
No description available.
96

Azacitidine is a potential therapeutic drug for pyridoxine-refractory female X-linked sideroblastic anemia / アザシチジンはピリドキシン不応性の女性X連鎖性鉄芽球性貧血の治療薬となり得る

Omune(Morimoto), Yuki 23 March 2022 (has links)
京都大学 / 新制・課程博士 / 博士(医学) / 甲第23777号 / 医博第4823号 / 新制||医||1057(附属図書館) / 京都大学大学院医学研究科医学専攻 / (主査)教授 江藤 浩之, 教授 寺田 智祐, 教授 小川 誠司 / 学位規則第4条第1項該当 / Doctor of Medical Science / Kyoto University / DFAM
97

Transplantation of Induced Pluripotent Stem Cell-Derived Airway Epithelia with a Collagen Scaffold into the Nasal Cavity / 鼻腔へのコラーゲンを足場としたiPSC由来気道上皮の移植

Kitada, Yuji 25 March 2024 (has links)
京都大学 / 新制・論文博士 / 博士(医学) / 乙第13602号 / 論医博第2312号 / 広島大学医学部医学科 / (主査)教授 後藤 慎平, 教授 森本 尚樹, 教授 平井 豊博 / 学位規則第4条第2項該当 / Doctor of Medical Science / Kyoto University / DFAM
98

Human Cerebral Organoids in Pillar/Perfusion Plates for Modeling Neurodevelopmental Disorders

Acharya, Prabha 05 1900 (has links)
Human induced pluripotent stem cell (iPSCs)-derived brain organoids have potential to recapitulate the earliest stages of brain development, serving as an effective in vitro model for studying both normal brain development and disorders. In this study, we demonstrate a straightforward approach of generating multiple cerebral organoids from iPSCs on a pillar plate platform, eliminating the need for labor-intensive, multiple transfer and encapsulation steps to ensure the reproducible generation of cerebral organoids. We formed embryoid bodies (EBs) in an ultra-low attachment (ULA) 384-well plate and subsequently transferred them to the pillar plate containing Matrigel, using a straightforward sandwiching and inverting method. Each pillar on the pillar plate contains a single spheroid, and the success rate of spheroid transfer was in a range of 95 - 100%. Using this approach, we robustly generated cerebral organoids on the pillar plate and demonstrated an intra-batch coefficient of variation (CV) below 9 – 19% based on ATP-based cell viability and compound treatment. Notably, our spheroid transfer method in combination with the pillar plate allows miniaturized culture of cerebral organoids, alleviates the issue of organoid variability, and has potential to significantly enhance assay throughput by allowing in situ organoid assessment as compared to conventional organoid culture in 6-/24-well plates, petri dishes, and spinner flasks.
99

Fusion of bovine fibroblasts to mouse embryonic stem cells: a model to study nuclear reprogramming

Villafranca Locher, Maria Cristina 20 April 2018 (has links)
The cells from the inner cell mass (ICM) of an early embryo have the potential to differentiate into all the different cell types present in an adult organism. Cells from the ICM can be isolated and cultured in vitro, becoming embryonic stem cells (ESCs). ESCs have several properties that make them unique: they are unspecialized, can self-renew indefinitely in culture, and given the appropriate cues can differentiate into cells from all three germ layers (ecto-, meso-, and endoderm), including the germline, both in vivo and in vitro. Induced pluripotent stem cells (iPSCs) can be generated from adult, terminally differentiated somatic cells by transient exogenous expression of four transcription factors (Oct4, Sox2, Klf4, and cMyc; OSKM) present normally in ESCs. It has been shown that iPSCs are equivalent to ESCs in terms of morphology, gene expression, epigenetic signatures, in vitro proliferation capacity, and in vitro and in vivo differentiation potential. However, unlike ESCs, iPSCs can be obtained from a specific individual without the need for embryos. This makes them a promising source of pluripotent cells for regenerative medicine, tissue engineering, drug discovery, and disease modelling; additionally, in livestock species such as the bovine, they also have applications in genetic selection, production of transgenic animals for agricultural and biomedical purposes, and species conservancy. Nevertheless, ESC and iPSC lines that meet all pluripotency criteria have, to date, only been successfully produced in mice, rats, humans, and non-human primates. In the first part of this dissertation, we attempted reprogramming of three types of bovine somatic cells: fetal fibroblasts (bFFs), adult fibroblasts (bAFs), and bone marrow-derived mesenchymal stem cells (bMSCs), using six different culture conditions adapted from recent work in mice and humans. Using basic mouse reprogramming conditions, we did not succeed in inducing formation of ESC-like colonies in bovine somatic cells. The combination of 2i/LIF plus ALK5 inhibitor II and ascorbic acid, induced formation of colony-like structures with flat morphology, that occasionally produced trophoblast-like structures. These trophoblast-like vesicles did not appear when an inhibitor of Rho-associated, coiled-coil containing protein kinase 1 (ROCK) was included in the medium. We screened for expression of exogenous OSKM vector with RT-PCR and found upregulation of OSKM vector 24h after Dox was added to the medium; however, expression was sharply decreased on day 2 after Dox induction, and was not detectable after day 3. In a separate experiment, we induced reprogramming of bFF and bAFs using medium supplemented with 50% of medium conditioned by co-culture with the bovine trophoblast CT1 line. These cells expressed both OCT4 and the OSKM vector 24h after Dox induction. However, similar to our previous observations, both markers decreased expression until no signal was detected after day 3. In summary, we were unable to produce fully reprogrammed bovine iPSCs using mouse and human protocols, and the exact cause of our lack of success is unclear. It is possible that a different method of transgene expression could play a role in reprogramming. However, these ideas would be driven by a rather empirical reasoning, extrapolating findings from other species, and not contributing in our understanding of the particular differences of pluripotecy in ungulates. Our inability to produce bovine iPSCs, combined with the only partial reprogramming observed by others, justifies the need for in depth study of bovine pluripotency mechanisms, before meaningful attempts to reprogram bovine somatic cells to plutipotency are made. Therefore, we focused on getting a better understanding of bovine nuclear reprogramming. This would allow us to rationally target the specific requirements of potential bovine pluripotent cells. Cell fusion is a process that involves fusion of the membrane of two or more cells to form a multinucleated cell. Fusion of a somatic cell to an ESC is known to induce expression of pluripotency markers in the somatic nucleus. In the second part of this dissertation, we hypothesized that fusion of bFFs to mouse ESCs (mESCs) would induce expression of pluripotency markers in the bFF nucleus. We first optimized a cell fusion protocol based on the use of polyethylene glycol (PEG), and obtained up to 11.02% of multinucleated cells in bFFs. Next, we established a method to specifically select for multinucleated cells originated from the fusion of mESCs with bFFs (heterokaryons), using indirect immunofluorescence. With this in place, flow cytometry was used to select 200 heterokaryons which were further analyzed using RNA-seq. We found changes in bovine gene expression patterns between bFFs and heterokaryons obtained 24h after fusion. Focusing on the bovine transcriptome, heterokaryons presented upregulation of early pluripotency markers OCT4 and KLF4, as well as hypoxia response genes, contrasted with downregulation of cell cycle inhibitors such as SST. The cytokine IL6, known to increase survival of early embryos in vitro, was upregulated in heterokaryons, although its role and mechanism of action is still unclear. This indicates that the heterokaryon cell fusion model recapitulates several of the events of early reprogramming, and can therefore be used for further study of pluripotency in the bovine. The cell fusion model presented here can be used as a tool to characterize early changes in bovine somatic nuclear reprogramming, and to study the effect of different reprogramming conditions on the bovine transcriptome. / Ph. D. / The cells of an early embryo have the potential to give rise to any cell type found in the adult body. When these cells are transferred to a culture dish and kept under the right conditions, they become Embryonic Stem Cells (ESCs), and they retain the same developmental potential as the original embryonic cells they were derived from. In 2006, researchers in Japan found that it is possible to “reprogram” the cells of an adult individual (for example, fibroblast skin cells taken from a biopsy) to an embryonic state, by forcing the cells to express extra copies of genes that are normally active in embryos. These reprogrammed cells are called induced Pluripotent Stem Cells (iPSCs), and similarly to ESCs, they also have the potential to produce any cell type found in an adult organism. Lines of iPSCs from livestock species have possible applications in agriculture, species conservancy, biomedical industry, and veterinary and human health. Unfortunately, for reasons that are to date not fully understood, the technology to produce iPSCs has, so far, only worked in mice, rats, humans, and non-human primates. We first attempted to produce bovine iPSCs by adapting methods and conditions used to derive iPSCs in mice and humans. We observed partial reprogramming of bovine cells, but were ultimately not able to produce true bovine iPSCs. This suggests that the bovine requires alternative/additional factors to induce reprogramming in adult cells. However, not knowing exactly what conditions or reagents will induce the reprogramming process in the cow, we decided to take a different approach. We focused on trying to understand how nuclear reprogramming works in the bovine. This would allow us to rationally target the specific requirements of potential bovine pluripotent cells. It is known that the fusion (“merging”) of an adult cell with a stem cell, causes the adult cell to change its gene expression pattern to resemble a stem cell. We therefore fused mouse ESCs with bovine fibroblasts, and observed changes in bovine gene expression pattern as early as 24 hours after fusion. The gene expression changes observed resemble those found during early reprogramming of human and mouse iPSCs, and are accompanied by silencing of fibroblast specific genes. This suggests that our cell fusion model recreates the changes that happen during reprogramming, and can therefore be used as a tool to better understand pluripotency in the cow. The cell fusion method described in this dissertation can in theory be adapted to other species; by fusing somatic cells from other species to mouse ESCs, this model can be used to find species specific relevant pluripotency genes.
100

Combining induced pluripotent stem cells and fibrin matrices for spinal cord injury repair

Montgomery, Amy 23 April 2014 (has links)
Spinal cord injuries result in permanent loss of motor function, leaving those affected with long term physical and financial burdens. Strategies for spinal cord injury repair must overcome unique challenges due to scar tissue that seals off the injury site, preventing regeneration. Tissue engineering can address these challenges with scaffolds that serve as cell- and drug-delivery tools, replacing damaged tissue while simultaneously addressing the inhibitory environment on a biochemical level. To advance this approach, the choice of cells, biomaterial matrix, and drug delivery system must be investigated and evaluated. This research seeks to evaluate (1) the behaviour of murine induced pluripotent stem cells in previously characterized 3D fibrin matrices; (2) the 3D fibrin matrix as a platform to support the differentiation of human induced pluripotent stem cells; and (3) the ability of an affinity-based drug delivery system to control the release of emerging spinal cord injury therapeutic, heat shock protein 70 from fibrin scaffolds. / Graduate / 0541 / amy.lynn.montgomery@gmail.com

Page generated in 0.052 seconds