1 |
The regulation of mouse embryonic stem cell differentiation by Nrf2Wongpaiboonwattana, Wikrom January 2017 (has links)
Embryonic stem (ES) cell maintenance and differentiation are dynamic processes controlled by various intrinsic and extrinsic factors. Identifying these factors will enhance the understanding about developmental process and improve the application of stem cells in clinic. Previous studies highlight a shift between non-oxidative and oxidative energy metabolism to play roles during differentiation. Oxidative metabolism is a major source of reactive oxygen species (ROS) which is regulated by a cytoprotective transcription factor, Nuclear factor erythroid 2-related factor 2 (Nrf2). Therefore, this study investigate relationship between metabolism, ROS, and Nrf2 during mouse ES cell differentiation. In vitro models representing early lineage differentiation were used. By measuring metabolic profiles, ROS, and Nrf2 levels from the models, Nrf2 was found related to pluripotency and ROS. However, relationship among metabolism and Nrf2 or ROS could not be detected. Gain- and loss-of-function experiments by pharmacological activator, short hairpin RNA knockdown, and CRISPR-Cas9 genome editing showed that Nrf2 could promote pluripotency and inhibit differentiation, especially during early differentiation toward neural lineage. This study suggested a new player in transcription control that governs pluripotency and differentiation.
|
2 |
Insights into Differentiation of Mouse Pluripotent Stem Cells to Neural LineageVerma, Isha January 2016 (has links) (PDF)
Pluripotent stem cells (PSCs: ESCs and iPSCs) provide an excellent model system for studying neural development and function. These cells also serve as a reliable source of cell replacement for the treatment of various neurodegenerative diseases and disorders. In view of these applications of PSCs, multiple protocols have been developed to direct their differentiation into neural lineage. However, many of these protocols are limiting in terms of
(a) low efficiency of generation of neural cells after long-term culture, (b) requirement of exogenous factors to induce and enhance neural differentiation and (c) supplementation of PSC culture medium with serum. Therefore, in the present study, attempts were made to achieve enhanced efficiency of neural differentiation of PSCs in the absence of exogenous molecules by employing a defined culture medium containing knockout serum replacement (KSR). KSR-based culture system was tested with our in-house-derived EGFP-transgenic ‘GS-2’ ES-cell and ‘N9’ iPS-cell lines and the wild-type ‘D3’ ES-cell line. In KSR medium, PSC-derived EBs predominantly generated neural cells from their post-attachment outgrowths and the complexity of neural networks increased as the culture progressed. Molecular phenotyping of PSC-derived neural cells was performed based on the expression of neural markers both at the mRNA and protein levels. qPCR analysis revealed the expression of markers corresponding to multiple neural cell types, including glutamatergic, GABAergic, cholinergic, serotonergic and dopaminergic neurons, astrocytes and oligodendrocytes, at various time points during the culture. RNA expression studies were confirmed via immunocytochemical analysis of the expression of neural markers. On day 15 of culture, FACS quantitation revealed the efficient generation of NES+ neural progenitors (~16-18%), MAP2+ mature neurons (~12-26%) and GFAP+ astrocytes (~30-63%) from the three PSC lines. Functional assessment of the generated neurons was performed by electrophysiological analysis of passive (RMP) and active (threshold, amplitude, FWHM and outward and inward currents) membrane properties. In order to investigate the role of default pathway in neural differentiation of PSCs in KSR medium, various strategies were employed. GS-2 ES-cells were cultured in the presence of different serum-free supplements; predominant differentiation into neural lineage was achieved in the B27-supplemented medium. The supplementation of KSR medium with BMP4 failed to show any effect of neural differentiation of GS-2 ES-cells. Also, EBs were switched between KSR- and FBS-supplemented culture conditions on day 2 or day 5 of culture. These experiments indicated that KSR medium promoted the generation of neural cell fates at the expense of differentiation to non-neural lineages. Interestingly, differentiation of P19 EC-cells in KSR medium also resulted in the predominant neural differentiation. These experiments collectively suggested the importance of default pathway in neural differentiation of PSCs in KSR medium. Additionally, efforts were made to enrich PSC-derived neural cells and also to enhance the efficiency of neural differentiation of PSCs. The removal of central EB-core from its peripheral neural outgrowth via scooping resulted in the enrichment of neural cells by ~1.3-2.1 folds. Significant increases were observed in the percentages of GS-2 ES-cell-derived MAP2+ mature neurons and GFAP+ astrocytes. Also, FGF2 supplementation of KSR medium was tested as a strategy to achieve enhanced efficiency of neural differentiation. Preliminary studies suggested an increase in the percentage of NES+ neural progenitors in the presence of FGF2. Taken together, KSR-based culture system offers a simple, defined and efficient method to achieve neural differentiation of PSCs in short time duration in the absence of exogenous factors. KSR-based culture system can be employed to generate specific neural cell types, study molecular regulation of neural differentiation and in disease modeling. Also, it can be used to develop a platform for high-throughput screening of potential neurogenic molecules and for dissecting their mechanisms of action.
|
3 |
TWIST1 : a subtle modulator of neural differentiation and neural tube formationNistor, Paul Andrei January 2013 (has links)
The central nervous system is formed from epiblast precursor cells through Neurulation. Neural induction can be studied in its main aspects in vitro. However, the process is poorly understood, especially in regard to when and how a cell becomes specified, and then committed, to be a neural cell. It is, on the other hand, well established that neural formation requires absence or, inhibition of the BMP signalling both in vivo and in vitro. ID1 is a direct target of BMP signalling with major influence on in vitro neural differentiation. A cDNA library screen, looking for transcription factors negatively regulated by ID1, reported TWIST1, along with only two other proteins. Twist1 expression is upregulated during in vitro neural differentiation. Furthermore, targeted deletion of Twist1 has dramatic consequences on anterior neural development. Twist1 knock-out mice fail to form the closed neural tube in the prospective brain, followed by exencephaly and, early embryonic death. In this thesis I investigate the influence on in vitro neural differentiation of a TWIST1 constitutively active form, insensitive to ID1 inhibition. I report that this transcriptionally active TWIST1 accelerates neural differentiation, in vitro and, biases it, towards dorsal phenotypes. I provide, for the first time, evidence for Twist1 expression in the neural tissue, observed weakly in a restricted domain, temporally and spatially, in the dorsal part of the neural tube. I propose a new model for TWIST1 influence at this level. I also investigate how TWIST1 actions depend on levels of expression and dimer choice. I found that, TWIST1 can exert its neural modulating actions only at low levels, as high levels divert a cell fate towards non-neural lineages.
|
4 |
Rôle de la protéine prion cellulaire (PRPC) dans la différenciation neuronale : Infection par les prions (PRPSC) et bases moléculaires de la neurodégénérescence / Role of the protein cellular prion ( PRPC) in the neural differentiation : prions infection( PRPC) and molecular base of the neurodegenerescenceDakowski, Caroline 23 October 2012 (has links)
Pas de résumé en français / Pas de résumé en anglais
|
5 |
Perfil de miRNAs intracelulares e liberados via vesículas extracelulares na diferenciação neural de células-tronco pluripotentes. / Intracellular and extracellular vesicles miRNAs profile during neural differentiation of pluripotent stem cells.Cruz, Lilian 05 April 2017 (has links)
As células-tronco processam e são sensíveis a múltiplos sinais dentro de seu microambiente, os quais podem exercer influências que regulam seu destino e sua função de forma espaço temporal. Neste contexto, células podem exercer seu papel biológico por transferir informação genética e alterar expressão gênica de alvos celulares através de vesículas extracelulares (VEs). MicroRNAs (miRNAs), uma classe de pequenos RNAs não codificantes, podem ser encontrados nestas vesículas e são considerados moléculas efetivas no controle do neurodesenvolvimento por regular genes chaves em tempo controlado. Pouco se sabe sobre como a diferenciação influencia o conteúdo de miRNAs liberados via VEs revelando o papel dos mesmos no microambiente de cada etapa do comprometimento neural. Assim, a proposta deste estudo foi analisar o perfil de miRNAs intracelulares e presentes em VEs envolvidos na diferenciação neural dopaminérgica de células-tronco pluripotentes e identificar os possíveis alvos regulados pelos mesmos como mecanismo de estabelecimento de um destino neural específico. / Stem cells sense and process multiple signals in their microenvironment, which can exert influences that regulate cell fate and function in a time spatial manner. In this context, the stem cells can exert their biological role transferring genetic information and altering the genetic expression of target cells through extracellular vesicles (EVs). MicroRNAs (miRNAs), a class of small non coding RNAs, can be found in those EVs and are considered effective molecules in the control of neurodevelopment and differentiation by regulating key genes in a time specific manner. However, little is known about how the cell differentiation influences the miRNAs content released through EVs, and how these molecules function in the microenvironment of each phase of neural commitment. Thus, the purpose of this study was to analyze the intracellular and EVs miRNAs profiles involved in the dopaminergic differentiation of pluripotent stem cells in attempt to identify possible targets regulated by miRNAs as a mechanism of specific neural fate decision.
|
6 |
Caracterização e diferenciação neural in vitro de células-tronco de polpa de dente decíduo humano / Characterization and in vitro neural differentiation of human dental pulp stem cellsPelegrino, Karla de Oliveira 03 August 2009 (has links)
A polpa do dente contém uma população de células-tronco multipotentes, que possuem a capacidade de se diferenciar em várias linhagens celulares distintas, in vitro e in vivo. Estas células possuem origem mesenquimal e, acredita-se que sejam derivadas da crista neural. Elas podem ser induzidas a se diferenciar em células de osso, cartilagem, músculo liso e esquelético. Há trabalhos também que descrevem a diferenciação neural destas células, com base principalmente em caracterizações morfológica e protéica. Contudo, um número crescente de dados sugere que a diferenciação neural de células de origem mesenquimal, pode, na verdade, ser um artefato de cultura. Neste contexto, se torna de grande importância introduzir nos estudos medidas de eletrofisiologia que possam confirmar a identidade neural destas células. Nosso objetivo foi isolar e caracterizar células-tronco de polpa de dente decíduo humano (IDPSC), verificando se as mesmas poderiam configurar um bom modelo para estudo da diferenciação neural in vitro. No presente trabalho, nós descrevemos uma população de IDPSCs indiferenciadas capazes de se diferenciar em adipócitos e osteócitos in vitro. Quando tratadas com ácido retinóico as IDPSC exibiram morfologia semelhante à de células neurais, além de apresentar expressão de proteínas neurais e disparar potencial de ação. Porém, curiosamente, as células sem tratamento também expressam esses marcadores e apresentam resposta eletrofisiológica, limitando a interpretação acerca do valor que o tratamento teria na promoção da diferenciação neural e, conseqüentemente, restringindo a utilização das mesmas como modelo de estudo da diferenciação neural in vitro. Apesar de a questão acerca da capacidade das IDPSCs em se diferenciar para neurônios permanecer não respondida, as IDPSCs foram capazes de direcionar a diferenciação neural de células-tronco embrionárias em ensaios de co-cultura. Estes resultados reforçam trabalhos prévios que mostram que as células-tronco de polpa de dente podem ser boas candidatas para terapia celular. / Post-natal stem cells have been isolated from a multiple source of tissues, as bone marrow, brain, skin, hair follicle and muscle. Many works have shown that these cells exhibit plasticity higher than the first believed and are able to transdifferentiate into cells from other germ layer origin. From dental pulp tissue is possible to isolate a population of multipotent stem cell which have mesenchymal origin and are supposed to be derived from neural crest. They can be induced to differentiate into mesodermal cell types, like chondrocyte, osteocyte and adipocyte. It has been also reported that they are able to transdifferentiate into neural cells. However, increasing data suggests that neural transdifferentiation of cells from mesenchymal origin, actually, may be an artifact of culture, due to cellular stress, for example. In front of this, it becomes of great importance to show that the expected differentiated cells exhibit functional responses, by the investigation of electrophysiological properties. Here we describe a population of undifferentiated human dental pulp stem cell that can be induced to differentiate into adipocytes and osteocytes in vitro. When treated with retinoic acid they showed neural cell like morphology, expressed neural markers and were able to fire action potentials. However, curiously, undifferentiated cells also exhibited the same responses, limiting the interpretation of neural treatment effect and, therefore, restricting the use of IDPSCs as a model for neural differentiation in vitro. Although the question of whether or not DPSC are able to become a neuron remains unsolved, these cells were able to direct neural differentiation of embryonic stem cells in co-culture assays. These findings in conjunction with previous works which shows DPSCs can exercise neuroprotective and neurotrophic effects indicate they may be a feasible candidate for cellular therapy.
|
7 |
Sinergia entre os receptores purinérgicos e o fator de crescimento de nervos (NGF) na diferenciação e proliferação de células tronco neurais / Synergy between purinergic receptors and nerve growth factor (NGF) in the differentiation and proliferation of neural stem cellsOliveira, Rodrigo La Banca de 29 July 2013 (has links)
Os receptores purinérgicos são divididos em receptores P1 e P2 de acordo com o seu agonista endógeno, os receptores metabotrópicos P1 são ativados por adenosina, enquanto os metabotrópicos P2Y e ionotrópicos P2X são estimulados através do ATP e outros nucleotídeos. Além de sua função bem estabelecida na neurotransmissão, a sinalização purinérgica tem despertado crescente interesse científico devido à sua importância nas funções no metabolismo celular, incluindo os processos de desenvolvimento embrionário e reparação de tecidos. Isso ocorre especialmente no sistema nervoso central, onde eles controlam a proliferação, diferenciação, apoptose e a liberação de fatores neurotróficos. Nesse trabalho nós focamos nas ações sinérgicas entre a sinalização purinérgica e o fator de crescimento de nervos (NGF), tendo em vista três formas conhecidas de interação entre o NGF e os receptores purinérgicos, a potencialização dos efeitos do NGF através de uma ligação cruzada entre as vias, a regulação da expressão dos receptores purinérgicos pelo NGF e regulação da liberação de NGF pela adenosina. Com o objetivo de investigar estes processos sinérgicos na regulação da proliferação, migração e determinação fenotípica, células precursoras neurais foram obtidas do telencéfalo de embriões de rato e cultivadas na forma de neuroesferas, sendo então submetidas a tratamentos com agonistas e antagonistas dos receptores purinérgicos, em associação com o NGF, ao longo da diferenciação. Os efeitos desses tratamentos foram analisados por citometria de fluxo. Nós mostramos que o NGF age sobre as células aumentando a proliferação, migração e população de células indiferenciadas e diminuindo a apoptose. A ativação dos receptores P1 levou à diminuição da gliogênese e ao aumento da proliferação e da migração. A estimulação de receptores P2 resultou em aumento da proliferação e redução da taxa de apoptose. Os receptores purinérgicos potenciaram a proliferação mediada por NGF, resultando assim num aumento da população de células indiferenciadas. Neste último efeito percebemos a participação do receptor P2Y2 na sinergia. Os resultados aqui apresentados revelam novos mecanismos para a interação entre o NGF e a sinalização purinérgica na biologia de células tronco neurais / Purinergic receptors are divided into P1 and P2 receptors according to agonist selectivity, G-protein- coupled P1 receptors are activated by adenosine, while metabotropic P2Y and ionotropic P2X subtypes are stimulated by ATP and other nucleotides. In addition to its well-established function in neurotransmission, purinergic signaling has raised increasing scientific interest due to its importance in essential cellular functions and metabolism including embryonic developmental processes and tissue repair, specially in the central nervous system, where they control proliferation, differentiation, apoptosis and the release of neurotrophic factors. Here we focus on synergistic actions between purinergic P1 and P2 receptor-mediated signaling and the nerve growth factor (NGF), in view of three recognized forms of interaction between NGF and purinergic signaling, the potencialization of NGF-mediated effects through a crosstalk, the regulation of purinergic receptor expression by NGF and the regulation of NGF release by adenosine. With the objective to investigate such synergistic processes in regulating proliferation, neural migration and phenotype determination, neurospheres obtained as proliferating neural stem and progenitor from rat embryonic telencephalon were subjected to treatments with purinergic receptor agonists and antagonists in association with NGF along differentiation. Effects of these treatments were analyzed by flow cytometry. We show that NGF acted on cells by increasing the population of undifferentiated cells, proliferation, migration and reducing apoptosis. P1 receptor activation led to decreased gliogenesis, increased proliferation and migration. Stimulation of P2 receptors resulted in increased proliferation and decreased apoptosis rates. Purinergic receptors potentiated NGF-mediated proliferation, thereby resulting in increased population of undifferentiated cells, in this latter effect, the P2Y2 receptor subtype participated in synergistic processes. The herein presented results reveal novel mechanisms for the interaction of NGF and purinergic signaling in neural stem cell biology
|
8 |
Mecanismos de ação da bradicinina na diferenciação neural in vitro / Mechanisms of bradykinin in neural differentiationPillat, Micheli Mainardi 19 November 2013 (has links)
Durante o desenvolvimento do sistema nervoso, as células têm a tarefa de proliferar, migrar, diferenciar, morrer ou amadurecer de modo altamente preciso para formar estruturas complexas. Tal precisão é alcançada em decorrência da interação perfeita entre as células que se comunicam por meio de mensageiros químicos no ambiente extracelular. Nesse contexto, nosso grupo tem reportado o envolvimento da bradicinina (BK) em processos do desenvolvimento neural. Recentemente, observou-se que a BK desempenha um papel importante na determinação do destino neural, favorecendo a neurogênese em detrimento da gliogênese em diversos modelos de diferenciação, além de potencializar a migração celular observada no modelo de neuroesferas de rato (Trujillo et al, 2012). Essas descobertas motivaram, como objetivo geral dessa tese, a investigação dos mecanismos subjacentes à BK que determinam seus efeitos. Dessa forma, o principal modelo de diferenciação utilizado foi as células precursoras neurais (CPNs) isoladas do telencéfalo de embriões de camundongos. Estas células proliferam na presença dos fatores de crescimento (GFs) EGF + FGF2, mantendo-se multipotentes e formando as neuroesferas, ao passo que migram e diferenciam em neurônios e glias pela remoção desses GFs, com boa proximidade aos eventos do desenvolvimento do cortex in vivo. Como resultados do presente trabalho, observou-se, inicialmente, que a BK também influencia efetivamente na diferenciação neural no modelo de CPNs murinas. Ao término da diferenciação, observou-se que esta cinina favoreceu a migração e promoveu o enriquecimento neuronal, evidenciado pelo aumento da expressão das proteínas β3-Tubulina e MAP2. Constatou-se também, que se observa uma baixa taxa de proliferação ao término da diferenciação na presença de BK (Trujillo et al, 2012), em consequência da grande proporção de neurônios em cultura estimulada por esta cinina. Esta relação causal foi evidenciada pelo ensaio de incorporação de EdU e concomitante imuno-detecção dos marcadores β3-Tubulina, GFAP e Nestina. Fatores que promovem a neurogênese podem promovê-la suprimindo a proliferação celular em CPNs indiferenciadas, mais especificamente, alongando a fase G1 do ciclo celular que resulta na divisão de diferenciação. Assim, investigou-se também se a BK influencia nesse processo. Análises por citometria de fluxo demonstraram que esta cinina suprimiu a proliferação estimulada pelos GFs, levando ao acúmulo de células na fase G1 do ciclo celular. Esse acúmulo não provém do bloqueio do ciclo, uma vez que se observam grandes proporções de células nas fases subsequentes à G1, indicando que essa fase foi apenas prolongada pela BK e, assim, corroboraria no favorecimento da neurogênese. Outra face dos mecanismos adjacentes à BK para seus efeitos na diferenciação neural se refere às vias de sinalização disparadas por esta cinina. Observou-se que a BK induz a produção de AMPc por intermédio de proteínas G sensíveis à toxina pertussis (TP) (provavelmente através da subunidade βγ de proteínas Gi) e promove a mobilização de cálcio dos estoques intracelulares, evidenciando o envolvimento da família de proteínas Gq. Esses resultados sugerem que o receptor B2 de cinina acopla-se tanto às proteínas Gi quanto às proteínas Gq em CPNs. A exposição dessas células à BK também ativou as vias da PI3K/Akt e da MAPK p38, mas não influenciou na ativação de STAT3 e JNK. Destaca-se o potencial da rota da MAPK ERK como uma das principais cascatas responsáveis por decodificar sinais de mensageiros externos em respostas celulares. O tratamento com BK em CPNs ativou a ERK por tempo prolongado e estimulou sua translocação para o núcleo. O efeito de BK na glio- e neurogênese de CPNs foi dependente da atividade de ERK, porque o bloqueio farmacológico dessa enzima impediu esse efeito de BK. Por outro lado, o favorecimento da migração induzido por esta cinina foi dependente da atividade da p38, enquanto, o seu efeito antiproliferativo foi condicionado à atividade das suas duas MAPKs, ERK e p38. Além disso, a via da PI3K/Akt ativada por BK não influenciou nos três eventos avaliados. Finalmente, utilizou-se nessa tese uma abordagem reducionista da diferenciação, porém amplamente utilizada por estudos mecanísticos de neurogênese, as células PC12. Assim, observou-se que a BK também ativa a ERK por tempo prolongado e com translocação nuclear, sendo que tal forma de ativação dessa quinase é proposta na literatura como necessária e suficiente para induzir a neurogênese dessas células. Demonstrou-se ainda que o bloqueio apenas da ativação sustentada de ERK, pela inibição das atividades das PKCs clássicas, impede o favorecimento da neurogênese por BK em células PC12. Juntos, esses resultados contribuem para elucidação dos mecanismos de ação da BK na regulação da diferenciação neural, colaborando para melhor entender esse processo e prevendo possíveis aplicações em terapias de reparo neuronal em pacientes com doenças, por exemplo, de Parkinson, Alzheimer, Esclerose Múltipla e lesões isquêmicas. / During CNS development cells perform the task of proliferating, migrating, differentiating, dying or maturing in highly accurate patterns. Such accuracy is reached as a result of the perfect interaction among the cells that constantly communicate with each other through cell-cell contact or through chemical messengers present in the extracellular medium. In this context, our group has reported the involvement of bradykinin (BK) in neural differentiation of stem cell models (Trujillo et al, 2012). Recently, it has been observed that BK plays an important role in determining neural destination, favoring neurogenesis over gliogenesis in several models of differentiation, besides potentializing cell migration observed in the model of rat neurospheres. These discoveries have motivated, as the general objective of this thesis, the investigation of the mechanisms underlying BK-promoted effects on neural differentiation using neural precursor cells (NPCs) isolated from the telencephalon of mice embryos. These cells proliferate in the presence of growth factors (GFs) EGF + FGF2, remaining multipotent and forming neurospheres, while they migrate and differentiate in neurons and glias following removal of these GFs, resembling in simplified conditions events of the development of the cortex in vivo. As results of the present thesis, it was initially observed that BK also effectively influences neural differentiation fate of the mouse NPC model. This kinin favored migration and promoted neuronal enrichment, evidenced by increased expression of β3-Tubulin and MAP2 marker proteins. Moreover, proliferation rates were largely decreased following differentiation in the presence of BK (Trujillo et al, 2012), due to the large proportion of neurons in the culture stimulated by this kinin. This causal relation was evidenced by the EdU incorporation assay and the concomitant immunodetection rates of β3- Tubulin, GFAP and Nestin markers. Factors which promote neurogenesis can promote it by suppressing cell proliferation in undifferentiated NPCs, more specifically, prolonging the G1 phase of the cell cycle that result in the division of differentiation. Thus, it was further investigated whether BK influences this process. Flow cytometry analyses showed that this kinin suppressed the proliferation stimulated by GFs, resulting in the accumulation of cells in the G1 phase of the cell cycle. This accumulation is not caused by a cycle block, since wide proportions of cells are observed in phases subsequent to the G1, indicating that this phase was only prolonged by BK, thus corroborating for favoring neurogenesis. Another aspect of the mechanisms adjacent to BK for its effects on neural differentiation refers to the signaling pathways triggered by this kinin. Here, we show that the kinin B2 receptor couples to both Gi and Gq proteins in NPCs. BK induced the production of intracellular cAMP by activation of G proteins sensitive to pertussis toxin (PT) (probably through βγ subunit of Gi proteins) and promoted the mobilization of calcium from intracellular stocks, demonstrating the involvement of YM-254890-sensitive Gq proteins. Exposure of these cells to BK also activated PI3K/Akt and MAPK p38 pathways, but did not affect the activation of STAT3 and JNK. It is important to note the potential MAPK-ERK route as one of the main cascades responsible for decoding signals from external messengers into cellular responses. NPC treatment with BK activated ERK for prolonged time and stimulated its translocation into the nucleus. The effect of BK on glio- and neurogenesis of NPCs depended plainly on ERK activity, because the pharmacological blockade of this enzyme prevented the BK-exerted effects. On the other hand, the favoring of migration induced by this kinin was dependent on p38 activity, while its antiproliferative effect was conditioned to the activity of both the MAPKs ERK and p38. In addition, the PI3K/Akt pathway activated by BK did not affect any of the three evaluated events. Finally, we used in this thesis a reductionist approach of differentiation based on the use of PC12 cells, which has been widely used for mechanistic studies of neurogenesis. Thus, it was observed that BK also activated ERK for prolonged time and with nuclear translocation, considering that such form of kinase activation is proposed in the literature as necessary and sufficient to induce neurogenesis in these cells. This study also demonstrated that blockade only of the sustained ERK activation, through the inhibition of the activity of classic PKCs, prevents the favoring of neurogenesis by BK in PC12 cells. Together, these results compose novel mechanisms of action of BK on events of neural development in vitro, contributing to the better understanding of this process and foreseeing possible applications in the future for neuronal repair strategies
|
9 |
Mecanismos de ação da bradicinina na diferenciação neural in vitro / Mechanisms of bradykinin in neural differentiationMicheli Mainardi Pillat 19 November 2013 (has links)
Durante o desenvolvimento do sistema nervoso, as células têm a tarefa de proliferar, migrar, diferenciar, morrer ou amadurecer de modo altamente preciso para formar estruturas complexas. Tal precisão é alcançada em decorrência da interação perfeita entre as células que se comunicam por meio de mensageiros químicos no ambiente extracelular. Nesse contexto, nosso grupo tem reportado o envolvimento da bradicinina (BK) em processos do desenvolvimento neural. Recentemente, observou-se que a BK desempenha um papel importante na determinação do destino neural, favorecendo a neurogênese em detrimento da gliogênese em diversos modelos de diferenciação, além de potencializar a migração celular observada no modelo de neuroesferas de rato (Trujillo et al, 2012). Essas descobertas motivaram, como objetivo geral dessa tese, a investigação dos mecanismos subjacentes à BK que determinam seus efeitos. Dessa forma, o principal modelo de diferenciação utilizado foi as células precursoras neurais (CPNs) isoladas do telencéfalo de embriões de camundongos. Estas células proliferam na presença dos fatores de crescimento (GFs) EGF + FGF2, mantendo-se multipotentes e formando as neuroesferas, ao passo que migram e diferenciam em neurônios e glias pela remoção desses GFs, com boa proximidade aos eventos do desenvolvimento do cortex in vivo. Como resultados do presente trabalho, observou-se, inicialmente, que a BK também influencia efetivamente na diferenciação neural no modelo de CPNs murinas. Ao término da diferenciação, observou-se que esta cinina favoreceu a migração e promoveu o enriquecimento neuronal, evidenciado pelo aumento da expressão das proteínas β3-Tubulina e MAP2. Constatou-se também, que se observa uma baixa taxa de proliferação ao término da diferenciação na presença de BK (Trujillo et al, 2012), em consequência da grande proporção de neurônios em cultura estimulada por esta cinina. Esta relação causal foi evidenciada pelo ensaio de incorporação de EdU e concomitante imuno-detecção dos marcadores β3-Tubulina, GFAP e Nestina. Fatores que promovem a neurogênese podem promovê-la suprimindo a proliferação celular em CPNs indiferenciadas, mais especificamente, alongando a fase G1 do ciclo celular que resulta na divisão de diferenciação. Assim, investigou-se também se a BK influencia nesse processo. Análises por citometria de fluxo demonstraram que esta cinina suprimiu a proliferação estimulada pelos GFs, levando ao acúmulo de células na fase G1 do ciclo celular. Esse acúmulo não provém do bloqueio do ciclo, uma vez que se observam grandes proporções de células nas fases subsequentes à G1, indicando que essa fase foi apenas prolongada pela BK e, assim, corroboraria no favorecimento da neurogênese. Outra face dos mecanismos adjacentes à BK para seus efeitos na diferenciação neural se refere às vias de sinalização disparadas por esta cinina. Observou-se que a BK induz a produção de AMPc por intermédio de proteínas G sensíveis à toxina pertussis (TP) (provavelmente através da subunidade βγ de proteínas Gi) e promove a mobilização de cálcio dos estoques intracelulares, evidenciando o envolvimento da família de proteínas Gq. Esses resultados sugerem que o receptor B2 de cinina acopla-se tanto às proteínas Gi quanto às proteínas Gq em CPNs. A exposição dessas células à BK também ativou as vias da PI3K/Akt e da MAPK p38, mas não influenciou na ativação de STAT3 e JNK. Destaca-se o potencial da rota da MAPK ERK como uma das principais cascatas responsáveis por decodificar sinais de mensageiros externos em respostas celulares. O tratamento com BK em CPNs ativou a ERK por tempo prolongado e estimulou sua translocação para o núcleo. O efeito de BK na glio- e neurogênese de CPNs foi dependente da atividade de ERK, porque o bloqueio farmacológico dessa enzima impediu esse efeito de BK. Por outro lado, o favorecimento da migração induzido por esta cinina foi dependente da atividade da p38, enquanto, o seu efeito antiproliferativo foi condicionado à atividade das suas duas MAPKs, ERK e p38. Além disso, a via da PI3K/Akt ativada por BK não influenciou nos três eventos avaliados. Finalmente, utilizou-se nessa tese uma abordagem reducionista da diferenciação, porém amplamente utilizada por estudos mecanísticos de neurogênese, as células PC12. Assim, observou-se que a BK também ativa a ERK por tempo prolongado e com translocação nuclear, sendo que tal forma de ativação dessa quinase é proposta na literatura como necessária e suficiente para induzir a neurogênese dessas células. Demonstrou-se ainda que o bloqueio apenas da ativação sustentada de ERK, pela inibição das atividades das PKCs clássicas, impede o favorecimento da neurogênese por BK em células PC12. Juntos, esses resultados contribuem para elucidação dos mecanismos de ação da BK na regulação da diferenciação neural, colaborando para melhor entender esse processo e prevendo possíveis aplicações em terapias de reparo neuronal em pacientes com doenças, por exemplo, de Parkinson, Alzheimer, Esclerose Múltipla e lesões isquêmicas. / During CNS development cells perform the task of proliferating, migrating, differentiating, dying or maturing in highly accurate patterns. Such accuracy is reached as a result of the perfect interaction among the cells that constantly communicate with each other through cell-cell contact or through chemical messengers present in the extracellular medium. In this context, our group has reported the involvement of bradykinin (BK) in neural differentiation of stem cell models (Trujillo et al, 2012). Recently, it has been observed that BK plays an important role in determining neural destination, favoring neurogenesis over gliogenesis in several models of differentiation, besides potentializing cell migration observed in the model of rat neurospheres. These discoveries have motivated, as the general objective of this thesis, the investigation of the mechanisms underlying BK-promoted effects on neural differentiation using neural precursor cells (NPCs) isolated from the telencephalon of mice embryos. These cells proliferate in the presence of growth factors (GFs) EGF + FGF2, remaining multipotent and forming neurospheres, while they migrate and differentiate in neurons and glias following removal of these GFs, resembling in simplified conditions events of the development of the cortex in vivo. As results of the present thesis, it was initially observed that BK also effectively influences neural differentiation fate of the mouse NPC model. This kinin favored migration and promoted neuronal enrichment, evidenced by increased expression of β3-Tubulin and MAP2 marker proteins. Moreover, proliferation rates were largely decreased following differentiation in the presence of BK (Trujillo et al, 2012), due to the large proportion of neurons in the culture stimulated by this kinin. This causal relation was evidenced by the EdU incorporation assay and the concomitant immunodetection rates of β3- Tubulin, GFAP and Nestin markers. Factors which promote neurogenesis can promote it by suppressing cell proliferation in undifferentiated NPCs, more specifically, prolonging the G1 phase of the cell cycle that result in the division of differentiation. Thus, it was further investigated whether BK influences this process. Flow cytometry analyses showed that this kinin suppressed the proliferation stimulated by GFs, resulting in the accumulation of cells in the G1 phase of the cell cycle. This accumulation is not caused by a cycle block, since wide proportions of cells are observed in phases subsequent to the G1, indicating that this phase was only prolonged by BK, thus corroborating for favoring neurogenesis. Another aspect of the mechanisms adjacent to BK for its effects on neural differentiation refers to the signaling pathways triggered by this kinin. Here, we show that the kinin B2 receptor couples to both Gi and Gq proteins in NPCs. BK induced the production of intracellular cAMP by activation of G proteins sensitive to pertussis toxin (PT) (probably through βγ subunit of Gi proteins) and promoted the mobilization of calcium from intracellular stocks, demonstrating the involvement of YM-254890-sensitive Gq proteins. Exposure of these cells to BK also activated PI3K/Akt and MAPK p38 pathways, but did not affect the activation of STAT3 and JNK. It is important to note the potential MAPK-ERK route as one of the main cascades responsible for decoding signals from external messengers into cellular responses. NPC treatment with BK activated ERK for prolonged time and stimulated its translocation into the nucleus. The effect of BK on glio- and neurogenesis of NPCs depended plainly on ERK activity, because the pharmacological blockade of this enzyme prevented the BK-exerted effects. On the other hand, the favoring of migration induced by this kinin was dependent on p38 activity, while its antiproliferative effect was conditioned to the activity of both the MAPKs ERK and p38. In addition, the PI3K/Akt pathway activated by BK did not affect any of the three evaluated events. Finally, we used in this thesis a reductionist approach of differentiation based on the use of PC12 cells, which has been widely used for mechanistic studies of neurogenesis. Thus, it was observed that BK also activated ERK for prolonged time and with nuclear translocation, considering that such form of kinase activation is proposed in the literature as necessary and sufficient to induce neurogenesis in these cells. This study also demonstrated that blockade only of the sustained ERK activation, through the inhibition of the activity of classic PKCs, prevents the favoring of neurogenesis by BK in PC12 cells. Together, these results compose novel mechanisms of action of BK on events of neural development in vitro, contributing to the better understanding of this process and foreseeing possible applications in the future for neuronal repair strategies
|
10 |
Sinergia entre os receptores purinérgicos e o fator de crescimento de nervos (NGF) na diferenciação e proliferação de células tronco neurais / Synergy between purinergic receptors and nerve growth factor (NGF) in the differentiation and proliferation of neural stem cellsRodrigo La Banca de Oliveira 29 July 2013 (has links)
Os receptores purinérgicos são divididos em receptores P1 e P2 de acordo com o seu agonista endógeno, os receptores metabotrópicos P1 são ativados por adenosina, enquanto os metabotrópicos P2Y e ionotrópicos P2X são estimulados através do ATP e outros nucleotídeos. Além de sua função bem estabelecida na neurotransmissão, a sinalização purinérgica tem despertado crescente interesse científico devido à sua importância nas funções no metabolismo celular, incluindo os processos de desenvolvimento embrionário e reparação de tecidos. Isso ocorre especialmente no sistema nervoso central, onde eles controlam a proliferação, diferenciação, apoptose e a liberação de fatores neurotróficos. Nesse trabalho nós focamos nas ações sinérgicas entre a sinalização purinérgica e o fator de crescimento de nervos (NGF), tendo em vista três formas conhecidas de interação entre o NGF e os receptores purinérgicos, a potencialização dos efeitos do NGF através de uma ligação cruzada entre as vias, a regulação da expressão dos receptores purinérgicos pelo NGF e regulação da liberação de NGF pela adenosina. Com o objetivo de investigar estes processos sinérgicos na regulação da proliferação, migração e determinação fenotípica, células precursoras neurais foram obtidas do telencéfalo de embriões de rato e cultivadas na forma de neuroesferas, sendo então submetidas a tratamentos com agonistas e antagonistas dos receptores purinérgicos, em associação com o NGF, ao longo da diferenciação. Os efeitos desses tratamentos foram analisados por citometria de fluxo. Nós mostramos que o NGF age sobre as células aumentando a proliferação, migração e população de células indiferenciadas e diminuindo a apoptose. A ativação dos receptores P1 levou à diminuição da gliogênese e ao aumento da proliferação e da migração. A estimulação de receptores P2 resultou em aumento da proliferação e redução da taxa de apoptose. Os receptores purinérgicos potenciaram a proliferação mediada por NGF, resultando assim num aumento da população de células indiferenciadas. Neste último efeito percebemos a participação do receptor P2Y2 na sinergia. Os resultados aqui apresentados revelam novos mecanismos para a interação entre o NGF e a sinalização purinérgica na biologia de células tronco neurais / Purinergic receptors are divided into P1 and P2 receptors according to agonist selectivity, G-protein- coupled P1 receptors are activated by adenosine, while metabotropic P2Y and ionotropic P2X subtypes are stimulated by ATP and other nucleotides. In addition to its well-established function in neurotransmission, purinergic signaling has raised increasing scientific interest due to its importance in essential cellular functions and metabolism including embryonic developmental processes and tissue repair, specially in the central nervous system, where they control proliferation, differentiation, apoptosis and the release of neurotrophic factors. Here we focus on synergistic actions between purinergic P1 and P2 receptor-mediated signaling and the nerve growth factor (NGF), in view of three recognized forms of interaction between NGF and purinergic signaling, the potencialization of NGF-mediated effects through a crosstalk, the regulation of purinergic receptor expression by NGF and the regulation of NGF release by adenosine. With the objective to investigate such synergistic processes in regulating proliferation, neural migration and phenotype determination, neurospheres obtained as proliferating neural stem and progenitor from rat embryonic telencephalon were subjected to treatments with purinergic receptor agonists and antagonists in association with NGF along differentiation. Effects of these treatments were analyzed by flow cytometry. We show that NGF acted on cells by increasing the population of undifferentiated cells, proliferation, migration and reducing apoptosis. P1 receptor activation led to decreased gliogenesis, increased proliferation and migration. Stimulation of P2 receptors resulted in increased proliferation and decreased apoptosis rates. Purinergic receptors potentiated NGF-mediated proliferation, thereby resulting in increased population of undifferentiated cells, in this latter effect, the P2Y2 receptor subtype participated in synergistic processes. The herein presented results reveal novel mechanisms for the interaction of NGF and purinergic signaling in neural stem cell biology
|
Page generated in 0.118 seconds