• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 72
  • 24
  • 17
  • 9
  • 6
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 156
  • 156
  • 156
  • 156
  • 41
  • 33
  • 31
  • 27
  • 24
  • 23
  • 23
  • 22
  • 22
  • 22
  • 20
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
121

Repopulation and Stimulation of Porcine Cardiac Extracellular Matrix to Create Engineered Heart Patches

Moncada Diaz, Silvia Juliana 01 December 2018 (has links)
Heart failure is the main cause of death for both men and women in the United States. The only proven treatment for patients with heart failure is heart transplantation. The goal of this research is to create patches of tissue that could mimic the function of the native heart to repair the damaged portions of the heart. In this study, whole porcine hearts were decellularized to create a 3D construct that was recellularized with cardiomyocytes (CM) differentiated from human induced pluripotent stem (IPS) cells. At day 4 of differentiation, IPS-derived CMs were implanted onto cardiac extracellular matrix (cECM) and ten days after recellularization, the cells started to beat spontaneously. After implantation, the progenitor CMs continued to proliferate and populate the cECM. A live/dead assay showed the potential of the cECM as a scaffold suitable for recellularization. Confocal microscopy images were taken to evaluate the organization of the cells within the matrix and the impact of the cECM on the growth and maturation of the CMs. Representative cardiac Troponin T (cTNT) and vimentin immunostaining images of CMs derived from iPSCs, on cECM and on standard cell culture plates showed that the cECM allowed the cells to organize and form fibrils with the fibroblasts, compared with CMs cultured in regular culture plates. The timeline of implantation of the cells was a key factor for the development of the heart tissue constructs. Progenitor CMs seeded onto cECM showed better organization and the ability to penetrate 96 µm deep within the collagen fibers and align to them. However, mature CMs seeded onto the matrix showed a disorganized network with very reduced interaction of CMs with fibroblasts, forming two different layers of cells; CMs on top of fibroblasts. In addition, the depth of penetration of the mature CMs within the matrix was only 20 µm. To evaluate the impact of the addition of support cells to the CM monolayer cultures, CMs were co-cultured with human umbilical vein endothelial cells (HUVEC) and it was demonstrated that at ratios of 2:1 HUVEC:CM the beating rate of the CMs was improved from 20 to 112 bpm, additionally, the CM monolayer cultures showed a more synchronized beating pace after the addition of HUVECs. Pharmacological stimulation was performed on CM monolayer cultures using norepinephrine as a stimulator and the results showed that the beating pace of the CMs was improved to 116 bpm after 5 minutes of drug exposure. For future studies, inosculation of the tissue constructs could be performed with the incorporation of membrane proteins to understand the mechanotransduction of the cells. As a preliminary study, the action of dual claudins was evaluated with HUVEC cultures and the results showed the potential of these membrane proteins in the healing of the damaged cell membrane.
122

Cellular Cardiomyoplasty: Its Past, Present, and Future

Lamb, Elizabeth K., Kao, Grace W., Kao, Race L. 18 July 2013 (has links)
Cellular cardiomyoplasty is a cell therapy using stem cells or progenitor cells for myocardial regeneration to improve cardiac function and mitigate heart failure. Since we first published cellular cardiomyoplasty in 1989, this procedure became the innovative method to treat damaged myocardium other than heart transplantation. A significant improvement in cardiac function, metabolism, and perfusion is generally observed in experimental and clinical studies, but the improvement is mild and incomplete. Although safety, feasibility, and efficacy have been well documented for the procedure, the beneficial mechanisms remain unclear and optimization of the procedure requires further study. This chapter briefly reviews the stem cells used for cellular cardiomyoplasty and their clinical outcomes with possible improvements in future studies.
123

Cellular Cardiomyoplasty: Its Past, Present, and Future

Lamb, Elizabeth K., Kao, Grace W., Kao, Race L. 18 July 2013 (has links)
Cellular cardiomyoplasty is a cell therapy using stem cells or progenitor cells for myocardial regeneration to improve cardiac function and mitigate heart failure. Since we first published cellular cardiomyoplasty in 1989, this procedure became the innovative method to treat damaged myocardium other than heart transplantation. A significant improvement in cardiac function, metabolism, and perfusion is generally observed in experimental and clinical studies, but the improvement is mild and incomplete. Although safety, feasibility, and efficacy have been well documented for the procedure, the beneficial mechanisms remain unclear and optimization of the procedure requires further study. This chapter briefly reviews the stem cells used for cellular cardiomyoplasty and their clinical outcomes with possible improvements in future studies.
124

Hépatocytes différenciés à partir de cellules souches pluripotentes induites : modèle pour la thérapie cellulaire et génique autologue de l'hémophilie B et modèle préclinique chez le primate / Hepatocytes differentiated from induced pluripotent stem cells : model for autologous cell and gene therapy of hemophilia B and preclinical model in primate

Luce, Eléanor 15 December 2017 (has links)
Ce projet de thèse vise à modéliser puis à apporter la preuve de concept d’une thérapie cellulaire et génique autologue de maladies héréditaires du foie par la transplantation d’hépatocytes différenciés à partir des cellules souches pluripotentes induites (iPSC) spécifiques du patient, une fois celles-ci corrigées du défaut génétique. L’hémophilie B (HB) est une maladie héréditaire causée par une mutation du gène F9, codant le facteur IX (FIX) de la coagulation synthétisé dans le foie par les hépatocytes. Des fibroblastes d’un patient porteur de la « mutation royale » ont été reprogrammés en iPSC puis différenciés en hépatocytes. L’étude de l’ARNm du F9 par séquençage haut débit a confirmé la présence d’un site d’épissage anormal codant une protéine tronquée. D’autres iPSC ont été obtenues à partir des cellules d’un second patient HB exprimant un FIX inactif. Après insertion ciblée d’une cassette thérapeutique codant le FIX dans un site génomique sûr à l’aide d’endonucléases artificielles (CRISPR/Cas9), nous avons différencié les iPSC corrigées et non corrigées en hépatocytes (respectivement corr-HB-Heps et HB-Heps) et confirmé une expression plus importante de l’ARNm du F9 et de la protéine FIX dans les corr-HB-Heps. En revanche, nous n’avons pas détecté d’activité du FIX transgénique sans doute à cause d’une différenciation incomplète des hépatocytes. Nous avons alors développé un protocole de différenciation en sphéroïdes permettant une différenciation plus efficace confirmée aux niveaux ARN et protéine FIX. L’analyse de l’activité du FIX produit nous permettra de valider la correction in vitro avant de la valider in vivo en transplantant les corr-HB-Heps dans un modèle de souris F9KO. Finalement, la dernière partie de ce travail a consisté à développer un protocole de différenciation d’iPSC de singe en hépatocytes en vue d’une transplantation autologue dans le foie de l’animal donneur pour valider la faisabilité et la sécurité de cette approche chez le gros animal. / This PhD project aims to model and to bring a proof of concept for autologous cell/gene therapy of inherited liver diseases by transplanting hepatocytes differentiated from patient-specific induced pluripotent stem cells (iPSCs), after correction of the genetic defect. Hemophilia B (HB) is an inherited disease caused by a mutation in the F9 gene encoding clotting factor IX (FIX), synthesized in the liver by hepatocytes. Fibroblasts of a patient with the "royal mutation" were reprogrammed in iPSCs then differentiated into hepatocytes. The study of the F9 mRNA by high-throughput sequencing confirmed the presence of an abnormal splice site leading to a truncated protein explaining hemophilia. Other iPSCs were obtained and characterized from the cells of a second HB patient expressing an inactive FIX. By targeting in these iPSCs the insertion of a therapeutic cassette encoding FIX into a safe harbor site using artificial endonucleases (CRISPR/Cas9), we differentiated the corrected and non-corrected iPSC into hepatocytes. Quantitative analyzes confirmed a higher expression of F9 mRNA and FIX protein in the corrected clones. In contrast, we did not detect transgenic FIX activity due to a lack of post-translational modifications necessary for FIX activity. We then developed a protocol of differentiation in spheroids quantitatively more efficient to produce FIX. Detection of FIX activity will validate our in vitro approach before validation in vivo by transplanting the corrected hepatocytes in a F9KO mouse model. Finally, the last part of this work consisted in the development of a differentiation protocol of nonhuman primate iPSCs into hepatocytes for autologous transplantation into the liver of the donor animal in order to validate the feasibility and the safety of such an approach in the large animal
125

WNT7A and EGF Alter Myogenic Differentiation in hiPSCs Derived from Duchenne Muscular Dystrophy Patients

Madana, Maria 22 June 2023 (has links)
Duchenne Muscular Dystrophy (DMD) is a disorder caused by loss-of-function mutations in dystrophin, a critical protein that maintains muscle fiber integrity. Our lab discovered that dystrophin-deficient skeletal muscle stem cells, also known as satellite cells, cannot generate enough myogenic progenitors for proper muscle regeneration. Previously, we demonstrated that WNT7A, a protein expressed during muscle regeneration, stimulates symmetric division of satellite cells, and gives rise to two daughter satellite cells. Conversely, epidermal growth factor (EGF) induces asymmetric division, which generates one daughter satellite cell and one committed precursor cell. We aimed to investigate these satellite cell division mechanisms following WNT7A or EGF treatment in a human model using healthy and DMD-patient derived hiPSCs differentiated into the myogenic lineage. The presence of satellite-like cells was confirmed in both lines by their characteristic expression of PAX7 and other myogenic markers. Intriguingly, DMD-patient hiPSCs precociously differentiated compared to healthy control human induced pluripotent stem cells (hiPSCs). More notably, WNT7A treatment had a potent effect on the DMD differentiated cells. High content analysis revealed an expansion of the satellite-like cell pool as observed by a higher number of PAX7+ cells within the total population and gene expression analysis demonstrated a significant increase in global PAX7 expression. In contrast, EGF treatment reduced the number of PAX7+ cells and increased the proportion of MYOG+ cells within the myogenic population, indicating an increase in myogenic progenitors. Taken together, WNT7A and EGF can alter the myogenic differentiation program of healthy and DMD-patient derived hiPSCs by modulating the satellite-like cell division dynamics.
126

Network-Based Multi-Omics Approaches for Precision Cardio-Oncology: Pathobiology, Drug Repurposing and Functional Testing

Lal, Jessica Castrillon 26 May 2023 (has links)
No description available.
127

Altered Kinase Networks in Major Depressive Disorder

Alnafisah, Rawan 15 June 2023 (has links)
No description available.
128

Toxicity Of Silver Nanoparticles In Mouse Embryonic Stem Cells And Chemical Based Reprogramming Of Somatic Cells To Sphere Cells

Rajanahalli Krishnamurthy, Pavan January 2011 (has links)
No description available.
129

Novel Genetic Modifiers in a Monogenic Cardiac Arrhythmia

Chai, Shin Luen, Chai 31 May 2018 (has links)
No description available.
130

In-vitro-Charakterisierung und kardiale Differenzierung von induziert pluripotenten Stammzellen der Maus / In vitro characterisation and cardiac differentiation of murine induced pluripotent stem cells

Lentzen, Max-Philipp 06 April 2016 (has links)
No description available.

Page generated in 0.1754 seconds