• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 11
  • 1
  • Tagged with
  • 16
  • 16
  • 16
  • 13
  • 12
  • 12
  • 6
  • 6
  • 6
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Generic Techniques for the verification of infinite-state systems

Legay, Axel 10 December 2007 (has links)
Within the context of the verification of infinite-state systems, 'Regular model checking' is the name of a family of techniques in which states are represented by words or trees, sets of states by finite automata on these objects, and transitions by finite automata operating on pairs of state encodings, i.e. finite-state transducers. In this context, the problem of computing the set of reachable states of a system can be reduced to the one of computing the iterative closure of the finite-state transducer representing its transition relation. This thesis provides several techniques to computing the transitive closure of a finite-state transducer. One of the motivations of the thesis is to show the feasibility and usefulness of this approach through a combination of the necessary theoretical developments, implementation, and experimentation. For systems whose states are encoded by words, the iteration technique proceeds by comparing a finite sequence of successive powers of the transducer, detecting an 'increment' that is added to move from one power to the next, and extrapolating the sequence by allowing arbitrary repetitions of this increment. For systems whose states are represented by trees, the iteration technique proceeds by computing the powers of the transducer and progressively collapsing their states according to an equivalence relation until a fixed point is reached. The proposed iteration techniques can just as well be exploited to compute the closure of a given set of states by repeated applications of the transducer, which has proven to be a very effective way of using the technique. Various examples have been handled completely within the automata-theoretic setting. Another applications of the techniques are the verification of linear temporal properties as well as the computation of the convex hull of a finite set of integer vectors.
2

Inclusion problems for one-counter systems

Totzke, Patrick January 2014 (has links)
We study the decidability and complexity of verification problems for infinite-state systems. A fundamental question in formal verification is if the behaviour of one process is reproducible by another. This inclusion problem can be studied for various models of computation and behavioural preorders. It is generally intractable or even undecidable already for very limited computational models. The aim of this work is to clarify the status of the decidability and complexity of some well-known inclusion problems for suitably restricted computational models. In particular, we address the problems of checking strong and weak simulation and trace inclusion for processes definable by one-counter automata (OCA), that consist of a finite control and a single counter ranging over the non-negative integers. We take special interest of the subclass of one-counter nets (OCNs), that cannot fully test the counter for zero and which is subsumed both by pushdown automata and Petri nets / vector addition systems. Our new results include the PSPACE-completeness of strong and weak simulation, and the undecidability of trace inclusion for OCNs. Moreover, we consider semantic preorders between OCA/OCN and finite systems and close some gaps regarding their complexity. Finally, we study deterministic processes, for which simulation and trace inclusion coincide.
3

Verifying Absence of ∞ Loops in Parameterized Protocols

Saksena, Mayank January 2008 (has links)
<p>The complex behavior of computer systems offers many challenges for <i>formal verification</i>. The analysis quickly becomes difficult as the number of participating processes increases.</p><p>A <i>parameterized system</i> is a family of systems parameterized on a number <i>n</i>, typically representing the number of participating processes. The <i>uniform verification problem</i> — to check whether a property holds for each instance — is an infinite-state problem. The automated analysis of parameterized and infinite-state systems has been the subject of research over the last 15–20 years. Much of the work has focused on safety properties. Progress in verification of liveness properties has been slow, as it is more difficult in general.</p><p>In this thesis, we consider verification of parameterized and infinite-state systems, with an emphasis on liveness, in the verification framework called <i>regular model checking (RMC)</i>. In RMC, states are represented as words, sets of states as regular expressions, and the transition relation as a regular relation.</p><p>We extend the automata-theoretic approach to RMC. We define a <i>specification logic</i> sufficiently strong to specify systems representable using RMC, and linear temporal logic properties of such systems, and provide an automatic translation from a specification into an analyzable model.</p><p>We develop <i>acceleration techniques</i> for RMC which allow more uniform and automatic verification than before, with greater power. Using these techniques, we succeed to verify safety and liveness properties of parameterized protocols from the literature.</p><p>We present a novel <i>reachability based</i> verification method for verification of liveness, in a general setting. We implement the method for RMC, with promising results.</p><p>Finally, we develop a framework for the verification of dynamic networks based on graph transformation, which generalizes the systems representable in RMC. In this framework we verify the latest version of the DYMO routing protocol, currently being considered for standardization by the IETF.</p>
4

Formal language for statistical inference of uncertain stochastic systems

Georgoulas, Anastasios-Andreas January 2016 (has links)
Stochastic models, in particular Continuous Time Markov Chains, are a commonly employed mathematical abstraction for describing natural or engineered dynamical systems. While the theory behind them is well-studied, their specification can be problematic in a number of ways. Firstly, the size and complexity of the model can make its description difficult without using a high-level language. Secondly, knowledge of the system is usually incomplete, leaving one or more parameters with unknown values, thus impeding further analysis. Sophisticated machine learning algorithms have been proposed for the statistically rigorous estimation and handling of this uncertainty; however, their applicability is often limited to systems with finite state-space, and there has not been any consideration for their use on high-level descriptions. Similarly, high-level formal languages have been long used for describing and reasoning about stochastic systems, but require a full specification; efforts to estimate parameters for such formal models have been limited to simple inference algorithms. This thesis explores how these two approaches can be brought together, drawing ideas from the probabilistic programming paradigm. We introduce ProPPA, a process algebra for the specification of stochastic systems with uncertain parameters. The language is equipped with a semantics, allowing a formal interpretation of models written in it. This is the first time that uncertainty has been incorporated into the syntax and semantics of a formal language, and we describe a new mathematical object capable of capturing this information. We provide a series of algorithms for inference which can be automatically applied to ProPPA models without the need to write extra code. As part of these, we develop a novel inference scheme for infinite-state systems, based on random truncations of the state-space. The expressive power and inference capabilities of the framework are demonstrated in a series of small examples as well as a larger-scale case study. We also present a review of the state-of-the-art in both machine learning and formal modelling with respect to stochastic systems. We close with a discussion of potential extensions of this work, and thoughts about different ways in which the fields of statistical machine learning and formal modelling can be further integrated.
5

Verifying Absence of ∞ Loops in Parameterized Protocols

Saksena, Mayank January 2008 (has links)
The complex behavior of computer systems offers many challenges for formal verification. The analysis quickly becomes difficult as the number of participating processes increases. A parameterized system is a family of systems parameterized on a number n, typically representing the number of participating processes. The uniform verification problem — to check whether a property holds for each instance — is an infinite-state problem. The automated analysis of parameterized and infinite-state systems has been the subject of research over the last 15–20 years. Much of the work has focused on safety properties. Progress in verification of liveness properties has been slow, as it is more difficult in general. In this thesis, we consider verification of parameterized and infinite-state systems, with an emphasis on liveness, in the verification framework called regular model checking (RMC). In RMC, states are represented as words, sets of states as regular expressions, and the transition relation as a regular relation. We extend the automata-theoretic approach to RMC. We define a specification logic sufficiently strong to specify systems representable using RMC, and linear temporal logic properties of such systems, and provide an automatic translation from a specification into an analyzable model. We develop acceleration techniques for RMC which allow more uniform and automatic verification than before, with greater power. Using these techniques, we succeed to verify safety and liveness properties of parameterized protocols from the literature. We present a novel reachability based verification method for verification of liveness, in a general setting. We implement the method for RMC, with promising results. Finally, we develop a framework for the verification of dynamic networks based on graph transformation, which generalizes the systems representable in RMC. In this framework we verify the latest version of the DYMO routing protocol, currently being considered for standardization by the IETF.
6

Infinite-state Stochastic and Parameterized Systems

Ben Henda, Noomene January 2008 (has links)
A major current challenge consists in extending formal methods in order to handle infinite-state systems. Infiniteness stems from the fact that the system operates on unbounded data structure such as stacks, queues, clocks, integers; as well as parameterization. Systems with unbounded data structure are natural models for reasoning about communication protocols, concurrent programs, real-time systems, etc. While parameterized systems are more suitable if the system consists of an arbitrary number of identical processes which is the case for cache coherence protocols, distributed algorithms and so forth. In this thesis, we consider model checking problems for certain fundamental classes of probabilistic infinite-state systems, as well as the verification of safety properties in parameterized systems. First, we consider probabilistic systems with unbounded data structures. In particular, we study probabilistic extensions of Lossy Channel Systems (PLCS), Vector addition Systems with States (PVASS) and Noisy Turing Machine (PNTM). We show how we can describe the semantics of such models by infinite-state Markov chains; and then define certain abstract properties, which allow model checking several qualitative and quantitative problems. Then, we consider parameterized systems and provide a method which allows checking safety for several classes that differ in the topologies (linear or tree) and the semantics (atomic or non-atomic). The method is based on deriving an over-approximation which allows the use of a symbolic backward reachability scheme. For each class, the over-approximation we define guarantees monotonicity of the induced approximate transition system with respect to an appropriate order. This property is convenient in the sense that it preserves upward closedness when computing sets of predecessors.
7

Facing infinity in model checking expressive specification languages

Magnago, Enrico 18 November 2022 (has links)
Society relies on increasingly complex software and hardware systems, hence techniques capable of proving that they behave as expected are of great and growing interest. Formal verification procedures employ mathematically sound reasoning to address this need. This thesis proposes novel techniques for the verification and falsification of expressive specifications on timed and infinite-state systems. An expressive specification language allows the description of the intended behaviour of a system via compact formal statements written at an abstraction level that eases the review process. Falsifying a specification corresponds to identifying an execution of the system that violates the property (i.e. a witness). The capability of identifying witnesses is a key feature in the iterative refinement of the design of a system, since it provides a description of how a certain error can occur. The designer can analyse the witness and take correcting actions by refining either the description of the system or its specification. The contribution of this thesis is twofold. First, we propose a semantics for Metric Temporal Logic that considers four different models of time (discrete, dense, super-discrete and super-dense). We reduce its verification problem to finding an infinite fair execution (witness) for an infinite-state system with discrete time. Second, we define a novel SMT-based algorithm to identify such witnesses. The algorithm employs a general representation of such executions that is both informative to the designer and provides sufficient structure to automate the search of a witness. We apply the proposed techniques to benchmarks taken from software, infinite-state, timed and hybrid systems. The experimental results highlight that the proposed approaches compete and often outperform specific (application tailored) techniques currently used in the state of the art.
8

Few is Just Enough! : Small Model Theorem for Parameterized Verification and Shape Analysis

Haziza, Frédéric January 2015 (has links)
This doctoral thesis considers the automatic verification of parameterized systems, i.e. systems with an arbitrary number of communicating components, such as mutual exclusion protocols, cache coherence protocols or heap manipulating programs. The components may be organized in various topologies such as words, multisets, rings, or trees. The task is to show correctness regardless of the size of the system and we consider two methods to prove safety:(i) a backward reachability analysis, using the well-quasi ordered framework and monotonic abstraction, and (ii) a forward analysis which only needs to inspect a small number of components in order to show correctness of the whole system. The latter relies on an abstraction function that views the system from the perspective of a fixed number of components. The abstraction is used during the verification procedure in order to dynamically detect cut-off points beyond which the search of the state-space need not continue. Our experimentation on a variety of benchmarks demonstrate that the method is highly efficient and that it works well even for classes of systems with undecidable property. It has been, for example, successfully applied to verify a fine-grained model of Szymanski's mutual exclusion protocol. Finally, we applied the methods to solve the complex problem of verifying highly concurrent data-structures, in a challenging setting: We do not a priori bound the number of threads, the size of the data-structure, the domain of the data to store nor do we require the presence of a garbage collector. We successfully verified the concurrent Treiber's stack and Michael &amp; Scott's queue, in the aforementioned setting. To the best of our knowledge, these verification problems have been considered challenging in the parameterized verification community and could not be carried out automatically by other existing methods.
9

Infinite-state Stochastic and Parameterized Systems

Ben Henda, Noomene January 2008 (has links)
<p>A major current challenge consists in extending formal methods in order to handle infinite-state systems. Infiniteness stems from the fact that the system operates on unbounded data structure such as stacks, queues, clocks, integers; as well as parameterization.</p><p>Systems with unbounded data structure are natural models for reasoning about communication protocols, concurrent programs, real-time systems, etc. While parameterized systems are more suitable if the system consists of an arbitrary number of identical processes which is the case for cache coherence protocols, distributed algorithms and so forth. </p><p>In this thesis, we consider model checking problems for certain fundamental classes of probabilistic infinite-state systems, as well as the verification of safety properties in parameterized systems. First, we consider probabilistic systems with unbounded data structures. In particular, we study probabilistic extensions of Lossy Channel Systems (PLCS), Vector addition Systems with States (PVASS) and Noisy Turing Machine (PNTM). We show how we can describe the semantics of such models by infinite-state Markov chains; and then define certain abstract properties, which allow model checking several qualitative and quantitative problems.</p><p>Then, we consider parameterized systems and provide a method which allows checking safety for several classes that differ in the topologies (linear or tree) and the semantics (atomic or non-atomic). The method is based on deriving an over-approximation which allows the use of a symbolic backward reachability scheme. For each class, the over-approximation we define guarantees monotonicity of the induced approximate transition system with respect to an appropriate order. This property is convenient in the sense that it preserves upward closedness when computing sets of predecessors.</p>
10

Supervisory control of infinite state systems under partial observation / Contrôle supervisé des systèmes à états infinis sous observation partielle

Kalyon, Gabriel 26 November 2010 (has links)
A discrete event system is a system whose state space is given by a discrete set and whose state transition mechanism is event-driven i.e., its state evolution depends only on the occurrence of discrete events over the time. These systems are used in many fields of application (telecommunication networks, aeronautics, aerospace,...). The validity of these systems is then an important issue and to ensure it we can use supervisory control methods. These methods consist in imposing a given specification on a system by means of a controller which runs in parallel with the original system and which restricts its behavior. In this thesis, we develop supervisory control methods where the system can have an infinite state space and the controller has a partial observation of the system (this implies that the controller must define its control policy from an imperfect knowledge of the system). Unfortunately, this problem is generally undecidable. To overcome this negative result, we use abstract interpretation techniques which ensure the termination of our algorithms by overapproximating, however, some computations. The aim of this thesis is to provide the most complete contribution it is possible to bring to this topic. Hence, we consider more and more realistic problems. More precisely, we start our work by considering a centralized framework (i.e., the system is controlled by a single controller) and by synthesizing memoryless controllers (i.e., controllers that define their control policy from the current observation received from the system). Next, to obtain better solutions, we consider the synthesis of controllers that record a part or the whole of the execution of the system and use this information to define the control policy. Unfortunately, these methods cannot be used to control an interesting class of systems: the distributed systems. We have then defined methods that allow to control distributed systems with synchronous communications (decentralized and modular methods) and with asynchronous communications (distributed method). Moreover, we have implemented some of our algorithms to experimentally evaluate the quality of the synthesized controllers. / Un système à événements discrets est un système dont l'espace d'états est un ensemble discret et dont l'évolution de l'état courant dépend de l'occurrence d'événements discrets à travers le temps. Ces systèmes sont présents dans de nombreux domaines critiques tels les réseaux de communications, l'aéronautique, l'aérospatiale... La validité de ces systèmes est dès lors une question importante et une manière de l'assurer est d'utiliser des méthodes de contrôle supervisé. Ces méthodes associent au système un dispositif, appelé contrôleur, qui s'exécute en parrallèle et qui restreint le comportement du système de manière à empêcher qu'un comportement erroné ne se produise. Dans cette thèse, on s'intéresse au développement de méthodes de contrôle supervisé où le système peut avoir un espace d'états infini et où les contrôleurs ne sont pas toujours capables d'observer parfaitement le système; ce qui implique qu'ils doivent définir leur politique de contrôle à partir d'une connaissance imparfaite du système. Malheureusement, ce problème est généralement indécidable. Pour surmonter cette difficulté, nous utilisons alors des techniques d'interprétation abstraite qui assurent la terminaison de nos algorithmes au prix de certaines sur-approximations dans les calculs. Le but de notre thèse est de fournir la contribution la plus complète possible dans ce domaine et nous considèrons pour cela des problèmes de plus en plus réalistes. Plus précisement, nous avons commencé notre travail en définissant une méthode centralisée où le système est contrôlé par un seul contrôleur qui définit sa politique de contrôle à partir de la dernière information reçue du système. Ensuite, pour obtenir de meilleures solutions, nous avons défini des contrôleurs qui retiennent une partie ou la totalité de l'exécution du système et qui définissent leur politique de contrôle à partir de cette information. Malheureusement, ces méthodes ne peuvent pas être utilisées pour contrôler une classe intéressante de systèmes: les sytèmes distribués. Nous avons alors défini des méthodes permettant de contrôler des systèmes distribués dont les communications sont synchrones (méthodes décentralisées et modulaires) et asynchrones (méthodes distribuées). De plus, nous avons implémenté certains de nos algorithmes pour évaluer expérimentalement la qualité des contrôleurs qu'ils synthétisent.

Page generated in 0.108 seconds