Spelling suggestions: "subject:"info:entrepo/classification/ddc/540"" "subject:"info:restrepo/classification/ddc/540""
611 |
In vitro Charakterisierung poröser biofunktionalisierter Eisenschäume als KnochenimplantateFarack, Jana 21 April 2015 (has links)
Während Korrosionsbeständigkeit bisher ein wichtiges Kriterium bei der Materialentwicklung von metallischen Implantaten war, erlangen korrodierbare Metalle wie zumeist Magnesium aber auch Eisen zunehmend Bedeutung in der gegenwärtigen Forschung. Magnesium ist ein osteokonduktives Material und stimuliert die Knochenneubildung. Nachteil ist jedoch die geringe Korrosionsbeständigkeit, sodass Magnesium in der Regel in vivo schneller abgebaut wird, als neuer Knochen gebildet werden kann. Verglichen mit Magnesium ist die Korrosion von elementarem Eisen in vivo langsam und zeigt keine lokale oder systemische Zytotoxizität.
Während die meisten Forschungsarbeiten Eisen als degradierbares Implantatmaterial mit dem Ziel der kardiovaskulären Anwendung untersuchen, beschäftigt sich die vorliegende Arbeit mit Eisenschäumen, die u.a. zur Heilung überkritisch großer und belasteter Knochendefekte eingesetzt werden sollen.
Die Herstellung der Eisenschäume (Fe) erfolgt durch Pulvermetallurgieprozesse an den Fraunhofer-Instituten IKTS und IFAM in Dresden. Polyurethanschäume werden mit einer Carbonyleisensuspension mit 3,8 % Fe3P beschichtet, getrocknet, erhitzt und anschließend der verbleibende Eisenschaum gesintert. Die Bioaktivierung der Eisenschäume mit verschiedenen Calciumphosphatphasen erfolgt durch die InnoTERE GmbH. Hierfür werden die Eisenschäume phosphatiert und mit Brushit (Fe-B) beschichtet. Durch anschließendes Kochen bei 95 – 100 °C in 0,1 M NaOH für 24 h kann eine Hydroxylapatitschicht (Fe-HA) erhalten werden. Eine weitere Methode der Bioaktivierung stellt die Befüllung mit Calciumphosphat-Zementen dar. Dabei handelt es sich um einen von InnoTERE entwickelten Ein-Pasten-Calciumphosphat-Zement (1P PCP) und um einen magnesiumhaltigen Calciumphosphat-Zement (MgCPC).
Die Eisenschäume werden mittels physikalisch-chemischer, biochemischer und zellbiologischer Methoden im Hinblick auf Degradierbarkeit und Biokompatibilität in vitro untersucht und charakterisiert. Wesentliche Ziele der vorliegenden Arbeit sind neben der Charakterisierung des Korrosionsverhaltens, vor allem die Analyse der Reaktionen knochentypischer Zellen auf Beschichtungen sowie Korrosionsprodukte der metallischen Grundstruktur. Für die zellbiologischen Untersuchungen dienen die Osteoblastenzelllinie SaOs-2 sowie humane mesenchymale Stammzellen (hMSC).
Es konnte gezeigt werden, dass in Abhängigkeit der Beschichtung bzw. Füllung mit verschiedenen Calciumphosphatphasen die Eisenfreisetzung und damit das Korrosionsverhalten von Eisenschäumen variiert werden kann. Die höchsten Korrosionsraten sind bei unmodifizierten Eisenschäumen zu beobachten. Durch die Beschichtung mit Hydroxylapatit erfolgt eine verminderte Eisenfreisetzung. Durch die Beschichtung mit Brushit bzw. die Füllung mit Magnesium-Calciumphosphat Zement wird die Freisetzung von Korrosionsprodukten nahezu vollständig unterbunden.
Durch die Beschichtung mit Brushit bzw. HA wird neben dem Korrosionsverhalten auch die Bioaktivität der Proben beeinflusst. Während die unmodifizierten Fe in beiden untersuchten Zellkulturmedien sowie Fe-B in McCoys keinen Einfluss auf den Calcium- und Phosphatgehalt haben, ist bei Fe-B in DMEM über den gesamten Untersuchungszeitraum eine konstante Calcium- und Phosphatfreisetzung zu beobachten. Die bioaktiven Fe-HA zeigen den umgekehrten Effekt und entziehen dem Medium Calcium und Phosphat – in DMEM Calcium stärker als in McCoys und in McCoys Phosphat stärker als in DMEM.
Für das erfolgreiche Einwachsen von Implantaten bzw. die Heilung von Knochendefekten sollten Zellen, die am Knochenauf- und -umbau beteiligt sind, durch das Einbringen des Implantats nicht negativ beeinflusst werden. Ein Schlüsselereignis stellt dabei die Adhäsion dar. Die beste Adhäsion ist für die beide getestete Zelltypen auf Fe-B zu beobachten. Für Fe-HA werden die zweitbesten Adhäsionseffizienzen erzielt. Während für die Osteoblasten dabei das Zellkulturmedium keinen Einfluss hat, ist für die Stammzellen im Vergleich zu den SaOs-2 Zellen allerdings nur eine halb so gute Adhäsion zu beobachten. Die mit MgCPC bzw. mit 1P CPC gefüllten Schäume dagegen zeigen eine sehr schlechte Adhäsion sowohl von Osteoblasten als auch von Stammzellen. Für Fe-B+1MgCPC kann jedoch durch eine Erhöhung der Inkubationszeit von 4 h auf 24 h der Anteil an adhärenten Zellen deutlich gesteigert werden. Entsprechend des Korrosionsverhaltens adhärieren auf den unmodifizierten Eisenschäumen die Zellen am schlechtesten.
Darüber hinaus können sowohl SaOs-2 als auch hMSCs auf den CPP-beschichteten Fe nicht nur adhärieren, sondern auch proliferieren. Die eine wesentlich höhere Proliferationsrate aufweisenden SaOs-2 zeigen sowohl auf Fe-B als auch auf Fe-HA eine sehr gute Proliferation. Die langsamer proliferierenden Stammzellen dagegen zeigen ein etwas anderes Zellverhalten. Während auf Fe-B ebenfalls eine gute Proliferation zu beobachten ist, nimmt die Zellzahl auf Fe-HA zu Beginn der Inkubation zunächst ab. Mit der Zeit sinken Eisenfreisetzung und Calciumbindung, sodass ab Tag 14 auch hier eine Zunahme der Zellzahl zu beobachten ist. Die Perfusionskultur stellt ein Kultursystem dar, das den in vivo Bedingungen näher ist, als eine statische Kultivierung in Zellkulturwellplatten, sodass die Proliferation von SaOs-2 und hMSCs auf Fe-HA signifikant verbessert werden kann. Während für die unmodifzierten Fe bereits bei den SaOs-2 Zellen weder statisch noch dynamisch eine Zellzahlzunahme zu beobachten ist, kann für Fe-B+MgCPC die Proliferation durch die Perfusion verbessert werden. Für Fe-HA kann durch die Verwendung in vivo naher Zellkulturbedingungen die Proliferation beider Zelltypen entscheidend verbessert werden. Für die Fe-B zeigen die Zellen bereits in der statischen Kultur eine gute Proliferation, die durch die Perfusion nicht wesentlich gesteigert werden kann.
Die Untersuchungen zum osteogenen Differenzierungsverhalten zeigen sowohl bei indirekter Inkubation in Fe-B und Fe-HA Extrakten als auch im direkten Materialkontakt auf den CPP-bioaktivierten Fe, dass die untersuchten hMSCs in der Lage sind osteogen zu differenzieren und mineralisieren. Die Genexpressionsergebnisse bestätigen die Beobachtungen der biochemischen Analyse. Im Fall der alkalischen Phosphatase (ALP) wird der Effekt bei den Fe-HA Extrakten sogar noch deutlicher. Sowohl im Basis- als auch im Differenzierungsmedium zeigen die Zellen eine erhöhte ALP-Genaktivität. Durch die Beschichtung mit Hydroxylapatit kann auf den Fe-HA eine zeitigere Aktivierung der osteoblastären Differenzierung im Vergleich zur Plastikoberfläche beobachtet werden. Durch die Perfusionskultur ist aufgrund des Zusammenspiels von Stofftransport und Scherkräften eine gesteigerte Differenzierung der hMSCs auf den mit CPP beschichteten Fe zu beobachten – auf Fe-HA stärker als auf Fe-B.
Durch die korrosionsbedingte Eisenfreisetzung reagieren die hMSCs mit erhöhter Genexpression des Eisenspeicherproteins Ferritin bei gleichzeitig sinkender Genexpression für den Transferrinrezeptor CD71. Reaktive Sauerstoffspezies und der damit verbundene oxidative Stress bewirken eine erhöhte Genexpression von Enzymen der oxidativen Stressabwehr. Es handelt sich dabei um die im Zytoplasma vorkommende Superoxiddismutase SOD1 und die in den Mitochondrien lokalisierte SOD2 als primäre Enzyme und um die Glutathion-Reduktase als sekundäres Enzym. Die Genregulierung von Katalase, Glutathion-Peroxidase und Glutathion-Synthetase wird ebenfalls teilweise durch die Anwesenheit von Fe beeinflusst.
Fazit
Die in der vorliegenden Arbeit untersuchten Eisenschäume korrodieren in Abhängigkeit ihrer CPP-Modifizierung mit unterschiedlicher Intensität sowie Geschwindigkeit und beeinflussen so das Zellverhalten von hMSC und Osteoblasten. Die Eisenfreisetzung, die für die unmodifizierten Schäume am höchsten ist, wirkt sich negativ auf Adhäsion und Proliferation aus. Sowohl statisch als auch dynamisch ist eine Abnahme der Zellzahl zu beobachten. Ohne Modifikation sind die Eisenschäume daher für eine Anwendung als Knochenersatzmaterial in vivo eher ungeeignet. Im Gegensatz dazu stellen die mit Brushit und mit Hydroxylapatit beschichteten Fe-Schäume interessante Knochenersatzmaterialien dar. Es konnte gezeigt werden, dass sie aufgrund ihrer Calciumbindungs- bzw. -freisetzungskapazität die am Knochenaufbau beteiligten Zellen und deren Differenzierungsverhalten in Richtung Osteoblasten positiv beeinflussen können. Die mit mit MgCPC und mit Einpastenzement gefüllten Eisenschäume konnten nur ansatzweise untersucht werden. Eine endgültige Einschätzung zur Eignung für eine in vivo Anwendung ist daher im Rahmen der vorliegenden Arbeit nicht möglich. Dennoch sind sie vor allem im lasttragenden Bereich aufgrund guter mechanischer Eigenschaften innovative Knochenersatzmaterialien.
|
612 |
Synthese intermetallischer Phasen mittels mikrowellenunterstütztem Polyol-Prozess: Einfluss von Nanostrukturierung auf chemische und physikalische Eigenschaften der VerbindungenHeise, Martin 11 September 2015 (has links)
Schon seit dem 17. Jahrhundert ist bekannt, dass kolloidales Gold in wässrigen Lösungen eine rötliche Färbung hervorruft; ein Effekt der direkt aus der Nanostrukturierung des Goldes resultiert. Neben der Modifizierung optischer Eigenschaften können durch Nano- oder Mikrostrukturierung auch andere, neuartige Charakteristika hervorgerufen werden, wie bspw. an Bi3Ni nachgewiesen werden konnte: Mittels mikrowelleninduzierter, reduktiver Umsetzung in Ethylenglykol (mikrowellenunterstützter Polyol-Prozess) konnten submikroskalige Bi3Ni-Stäbchen kristallisiert werden, die in Magnetisierungsmessungen die überaus seltene Koexistenz von Supraleitung und Ferromagnetismus zeigten. Ein Quanteneffekt, der im entsprechenden Volumenmaterial nicht nachgewiesen werden kann und auf spezielle Oberflächenzustände zurückzuführen ist.
Durch Nanostrukturierung können außerdem die chemischen Eigenschaften entscheidend beeinflusst werden, wie an BiRh gezeigt werden konnte. Der mikrowellenunterstützte Polyol-Prozess begünstigt hierbei die Kristallisation von pseudohexagonalen Plättchen mit 60 nm Durchmesser und 20 nm Dicke. Im Gegensatz zum Volumenmaterial zeigten diese in der industrierelevanten Semihydrierung von Acetylen zu Ethylen Bestwerte sowohl in Bezug auf den Umsatz als auch die Selektivität.
Basierend auf diesen Erkenntnissen sollten mithilfe des mikrowellenunterstützten Polyol-Prozesses im Rahmen der vorliegenden Dissertation nanostrukturierte, intermetallische Verbindungen des Typs M–M‘ (M = Sn, Pb, Sb, Bi; M‘ = Fe, Co, Ni, Cu, Pd, Ir, Pt) hergestellt und eingehend chemisch sowie physikalisch charakterisiert werden. Als Edukte dienten Metallsalze, die stets in Ethylenglykol als primäres Lösungs- und Reduktionsmittel umgesetzt wurden. Das Polyol nimmt zusätzlich als oberflächenaktive Substanz Einfluss auf Partikelgröße und -gestalt. Zur Optimierung der Synthesen und um möglichst viele Phasen zugänglich zu machen, wurden Art und Konzentration der Metallsalze, pH-Wert, Reaktionstemperatur und -zeit variiert sowie die Zugabe von Oleylamin und/oder Ölsäure getestet. Oleylamin und Ölsäure sind ihrerseits oberflächenaktive Substanzen, wobei erstere zugleich reduktiv wirken kann. Die methodeninhärente Nanostrukturierung der Produkte führte teilweise zu bemerkenswerten Effekten in der Phasenbildung sowie Beeinflussung der chemischen Eigenschaften.
Nahezu das komplette binäre Phasensystem Bi–Pd konnte durch Optimierung der Syntheseparameter zugänglich gemacht werden. Die Besonderheit hierbei: Neben den Raumtemperaturphasen Bi2Pd, Bi2Pd5 und BiPd3 konnte Bi12Pd31 als Hochtemperaturmodifikation sowie die neue und zugleich metastabile Modifikation gamma-Bi1.0Pd erzeugt und stabilisiert werden. Das im NiAs-Strukturtyp kristallisierende gamma-Bi1.0Pd zeigte in Magnetisierungs- und Widerstandsmessungen Supraleitung unterhalb von 3.2 K.
Mittels mikrowellenunterstütztem Polyol-Prozess gelang bereits in eigenen Vorarbeiten die Synthese von nanostrukturiertem Bi3Ir. Die Verbindung ist ausschließlich in nanopartikulärer Form bei Raumtemperatur empfindlich gegenüber molekularem Sauerstoff und bildet im Zuge einer unkonventionellen oxidativen Interkalation das intermetallische Suboxid Bi3IrOx. Dieses Verhalten ist verknüpft mit einer amorphen Hülle um die Bi3Ir-Nanopartikel, da diese zur Aktivierung des molekularen Sauerstoffs benötigt wird. Unter Einsatz von Reduktionsmitteln — z.B. Wasserstoff, Superhydrid®, Hydrazin — ist der Oxidationsprozess für x < 2 vollständig reversibel. Im Rahmen der vorliegenden Arbeit konnten die Erkenntnisse über Bi3Ir und Bi3IrOx vertieft werden: Bi3IrOx konnte als erster Sauerstoffionenleiter bei Raumtemperatur klassifiziert werden, der darüber hinaus metallisch ist. Dies gelang mittels Röntgen- und Elektronenbeugung, hochauflösender Transmissionselektronenmikroskopie, Röntgenphotoelektronenspektroskopie, quantenchemischen Rechnungen, und Experimenten zur Reaktionskinetik. Mit 84 meV ist die Aktivierungsenergie für die Ionenleitung um eine Größenordnung kleiner als in allen konventionellen Sauerstoffionenleitern. Der Diffusionskoeffizient beträgt für 25 °C 1.2·10–22 m2s–1, was in Anbetracht der 10–19 m2s–1 des Yttrium-stabilisierten Zirkoniumoxids (häufig genutztes Referenzmaterial) bei 150 °C wenig erscheint, aber eben schon für Raumtemperatur gilt.
Durch den mikrowellenunterstützten Polyol-Prozess konnten erstmals phasenreine, nanostrukturierte Proben von PbPd3, Pd20Sb7, Pd8Sb3, PdSb, Ni5Sb2, und Pd13Sn9 synthetisiert werden sowie alternative Syntheserouten für weitere Phasen (alpha-/beta-/gamma-Bi2Pt, BiPt, NiSb, beta-Ni3Sn2, Pd2Sn, PdSn, Pt3Sn, PtSn, PtPb) ermittelt werden, wobei mehrfach die Bildung von Hochtemperaturphasen beobachtet wurde. Weiterhin konnten einige Grenzen der Methode aufgezeigt werden: Während blei- und bismutreiche Phasen prinzipiell einfach kristallisiert werden können, sind antimon- und zinnreiche Verbindungen mit der Methode kaum erreichbar. Außerdem zeigte sich, dass in den meisten Phasensystemen nur bestimmte Verbindungen angesteuert werden können; die Bildung der intermetallischen Phasen ist häufig die Triebkraft zur Reduktion der Metallkationen. In den Systemen von Co-Sb, Co-Sn und Ir-Sb konnte bisher keine Feststoffbildung beobachtet werden.
|
613 |
Biofunctionalization of Polymer Brush SurfacesPsarra, Evmorfia 10 June 2015 (has links)
Surface engineering of tailored materials with adjustable characteristics in relation to biological environment, is one of the main prerequisites for biotechnological applications. In recent years, advanced surface coatings in the nanometer range have drawn big attention. A special category of this group are stimuli responsive polymers tethered by one functional end to the surface. When the surface grafting density is big enough, the polymer chains are forced to stretch away from the interface due to excluded volume effects, creating a so called polymer brush. Nano-scaled polymer brushes are advantageous due to their nanostructure, which can be comparable to biological species, and their collaborative response to external stimuli.
Moreover, the material design parameters such as chemistry, surface topography, charge, and surface wettability can be adjusted by using the appropriate polymer, or a combination of polymers with respect to the desired material performance. In case of binary polymer brushes, the materials' properties are switched between the properties of two constituent polymers. Besides, upon switching of external stimuli, biomodified binary polymer brushes can hide or expose biofunctionalities, on demand. Hence, they are classified as smart biomaterials' surface coatings.
|
614 |
Synthesis, characterization and toxicological evaluation of carbon-based nanostructuresMendes, Rafael Gregorio 24 March 2015 (has links)
The synthesis, characterization and biological evaluation of different graphene-based nanoparticles with potential biomedical applications are explored. The results presented within this work show that eukaryotic cells can respond differently not only to different types of nanoparticles, but also identify slight differences in the morphology of nanoparticles, such as size. This highlights the great importance of the synthesis and thorough characterization of nanoparticles in the design of effective nanoparticle platforms for biological applications.
In order to test the influence of morphology of graphene-based nanoparticles on the cell response, nanoparticles with different sizes were synthesized and tested on different cells. The synthesis of spherical iron-oxide nanoparticles coated with graphene was accomplished using a colloidal chemistry route. This synthesis route was able to render nanoparticle samples with narrow size distributions, which can be taken as monodispersed.
Four different samples varying in diameter from 10 to 20 nm were produced and the material was systematically characterized prior to the biological tests. The characterization of the material suggests that the iron oxide nanoparticles consist of a mix of both magnetite and maghemite phases and are coated with a thin graphitic layer. All samples presented functional groups and were similar in all aspects except in diameter. The results suggest that cells can respond differently even to small differences in the size of the nanoparticles.
An in situ study of the coating of the iron-oxide nanoparticles using a transmission electron microscope revealed that it is possible to further graphitize the remaining oleic acid on the nanoparticles. The thickness of the graphitic coating was controlled by varying the amount of oleic acid on the nanoparticles. The in situ observations using an electron beam were reproduced by annealing the nanoparticles in a dynamic vacuum. This procedure showed that it is not only possible to coat large amounts of iron oxide nanoparticles with graphene using oleic acid, but also to improved their magnetic properties for other applications such as hyperthermia. This study therefore revealed a facile route to grow 2D graphene takes on substrates using oleic acid as a precursor.
The synthesis of nanographene oxide nanoparticles of different sizes was in a second approach accomplished by using the Hummers method to oxidize and expand commercially available graphite. The size of the oxidized graphite was adjusted by sonicating the samples for different periods of time. The material was also thoroughly characterized and demonstrated to have two distinctive average size distributions and possess functional groups. The results suggest that different size flakes can trigger different cell response.
The synthesis, characterization and biological evaluation of graphene nanoshells were performed. The graphene nanoshells were produced by using magnesia nanoparticles as a template to the graphene nanoshells. The coating of magnesia with graphene layers was accomplished using chemical vapor deposition. The nanoshells were obtained by removing the magnesia core. The size of the nanoshells was determined by the size of the magnesia nanoparticles and presented a broad size distribution since the diameter of the magnesia nanoparticles could not be controlled. The nanoshells were also characterized and the biological evaluation was performed in the Swiss Federal Laboratories for Materials Science and Technology (EMPA), in Switzerland. The results suggest that despite inducing the production of reactive oxygen species on cells, the nanoshells did not impede cell proliferation. / Die Herstellung, Charakterisierung und biologische Auswertung von verschiedenen Graphen-basierten Nanopartikeln mit einer potenziellen biomedizinischen Anwendung wurden erforscht. Die vorgestellten Ergebnisse im Rahmen dieser Arbeit zeigen, dass eukaryotische Zellen unterschiedlich reagieren können, wenn sie mit Nanopartikeln unterschiedlicher Morphologie interagieren. Die Zellen können geringe Unterschiede in der Morphologie, insbesondere der Größe der Nanopartikeln, identifizieren. Dies unterstreicht den Einfluss der Herstellungsmethoden und die Notwendigkeit einer gründlichen Charakterisierung, um ein effektives Design von Nanopartikeln für biologische Anwendungen zu erreichen.
Um den Einfluss der Größe von Graphen-basierten Nanopartikel auf das Zellverhalten zu erforschen, wurden verschiedene Graphen-beschichte Eisenoxid-Nanopartikelproben durch eine kolloidchemische Methode hergestellt. Dieses Herstellungsverfahren ermöglicht die Synthese von Nanopartikeln mit engen Größenverteilungen, die als monodispers gelten können. Vier Proben mit unterschiedlichen Durchmessern (von 10 bis 20 nm) wurden hergestellt und vor den biologischen Untersuchungen systematisch charakterisiert.
Die Probencharakterisierung deutet auf eine Mischung aus Magnetit- und Maghemit-Kristallphasen hin, außerdem besitzen die Nanopartikel eine dünne Graphitschicht. Die spektroskopischen Ergebnisse auch zeigen außerdem, dass alle Proben funktionelle Gruppen auf ihrer Oberfläche besitzen, sodass sie in allen Aspekten, außer Morphologie (Durchmesser), ähnlich sind. Die biologischen Untersuchungen deuten darauf hin, dass Zellen unterschiedliche Größen von Eisenoxid-Nanopartikeln reagieren können.
Ein in situ Untersuchung der Beschichtung der Eisenoxid-Nanopartikel wurde mit einem Transmissionelektronenmikroskop durchgeführt. Die Ergebnisse zeigen, dass eine dünne Schicht von Ölsäure aus dem Syntheseprozess auf den Nanopartikeln verbleibt. Diese Schicht kann mit einem Elektronstrahl in Graphen umgewandelt werden. Die Dicke der Graphitschicht auf den Nanopartikeln kann durch die Menge der eingesetzten Ölsäure kontrolliert werden. Die in situ Beobachtungen der Graphenumwandlung konnte durch erhitzen der Nanopartikeln in einem dynamischen Vakuum reproduziert werden. Das Brennen der Eisenoxid-Nanopartikel ermöglicht nicht nur die Graphitisierung der Ölsäure, sondern auch eine Verbesserung der magnetischen Eigenschaften der Nanopartikel für weitere Anwendungen, z. B. der Hyperthermie. Die Umwandlung der Ölsäure in Graphen konnte so als relativ einfaches Verfahren der Beschichtung von zweidimensionalen (2D) Substraten etabliert werden.
Die Herstellung von Nanographenoxid mit unterschiedlichen Größen wurde mit der Hummers-Method durchgeführt. Die unterschiedlichen Größen der Nanographenoxidpartikel wurde durch eine Behandlung in Ultraschallbad erreicht. Zwei Proben mit deutlicher Verteilung wurden mit mehreren Verfahren charakterisiert. Beide Proben haben Nanographenoxid Nanoteilchen mit verschiedenen funktionellen Gruppen. Die biologische Charakterisierung deutet darauf hin, dass unterschiedliche Größen des Nanographens ein unterschiedliches Zellverhalten auslösen.
Abschließend, wurde die Herstellung, Charakterisierung und biologische Auswertung von Graphen-Nanoschalen durchgeführt. Die Graphen-Nanoschalen wurden mit Magnesiumoxid-Nanopartikeln als Template hergestellt. Die Beschichtung des Magnesia mit Graphen erforgte durch die chemische Gasphasenabscheidung. Die Nanoschalen wurden durch Entfernen des Magnesia-Kerns erhalten. Die Größe der Nanohüllen ist durch die Größe der Magnesia-Kerns bestimmt und zeigt eine breite Verteilung, da der Durchmesser der Magnesiumoxid-Nanopartikel gegeben war. Die Nanoschalen wurden ebenfalls mit Infrarot- und Röntgen Photoemissionspektroskopie charakterisiert und die biologische Bewertung wurde im Eidgenössische Materialprüfungs- und Forschungsanstalt (EMPA) durchgeführt, in der Schweiz. Die Ergebnisse zeigen, dass zwar die Produktion von reaktiven Sauerstoffspezies in den Zellen ausgelöst wird, diese sich aber weiterhin vermehren können.
|
615 |
Multifunktionale (Meth)acrylat-Copolymere mit PhosphonsäurederivatenStarke, Sandra 17 November 2015 (has links)
Ziel der Doktorarbeit war es, Copolymere mit phosphonsäurehaltigen Seitenketten zu entwickeln, die nachfolgend über polymeranaloge Umsetzungen in Terpolymere mit polymerisationsfähgen Gruppen umgewandelt werden sollten. Die Terpolymere können dann somit im Bereich der Schicht,- Lackindustrie eingesetzt werden.
|
616 |
Untersuchungen zum Einfluss von Additiven auf die Langzeitstabilität von Polyethylenvinylacetatfolie bei Einsatz als Einbettmaterial in Photovoltaik-ModulenJentsch, Annegret 30 October 2015 (has links)
Polyethylenvinylacetat (EVA) ist das in der kristallinen Silizium Photovoltaik am häufigsten eingesetzte Einbettmaterial. Aufgrund der Applikation von Solarmodulen unterliegt das Polymer Alterungsmechanismen, die zu Änderungen oder Verlust wichtiger Eigenschaften führen können. Folge sind typische Fehlerbilder wie Delamination oder Yellowing, die zu Leistungsverlusten oder Modulausfällen führen können.
Ziel dieser Arbeit war es, den Einfluss von Umweltparametern (Temperatur, Feuchte, UV-Strahlung) und Stabilisatoren auf die Alterung von EVA-Folie zu untersuchen und damit einen Beitrag zur Identifikation der zugrundeliegenden Fehlermechanismen zu liefern. Dazu wurden sowohl Folien mit definierter und variierender Additivierung als auch kommerzielle Folien künstlichen Bewitterungstests unterzogen und die Änderungen verschiedener Eigenschaften analysiert. Dazu zählt die Haftung an der Grenzfläche EVA-Glas, das Transmissionsverhalten und die Farbänderung der Folie. Darüber hinaus wurden alterungsbedinge Änderungen an der chemischen Struktur von EVA und den Stabilisatoren mittels FTIR-Spektroskopie und GC/MS-Messungen erfasst.
Bei den untersuchten Additiven handelte es sich um ein organisches Peroxid (Vernetzer), einen Haftvermittler auf Silanbasis, einen UV-Absorber aus der Gruppe der Hydroxybenzophenone, ein Arylphosphit als Antioxidant und einen bi-funktionellen Stabilisator, das sogenannte HALS (hindered amine light stabilizer).
Im Rahmen der Arbeit ist es gelungen Ursache-Wirkungs-Zusammenhänge zwischen der Folienadditivierung und dem Auftreten verschiedener Fehlerbilder zu identifizieren. Darüber hinaus war es möglich eine Folienzusammensetzung zu definieren, die die bestmögliche Stabilität beim Einsatz von EVA als Einbettmaterial bieten sollte.
|
617 |
International Symposium XeMAT2015 September 13-17, 2015 in Dresden, Germany: International Symposium XeMAT2015 September 13-17, 2015 in Dresden, Germany: Xenon/hyperpolarized noble gases in magnetic resonanceBrunner, Eike 14 January 2016 (has links)
The present Book of Abstracts includes most of the contributions to the International Symposium XeMAT 2015, Xenon/hyperpolarized noble gases in magnetic resonance. This symposium took place from September 13-17, 2015 in Dresden in the new chemistry building of TU Dresden and covered all aspects of the use of xenon and hyperpolarized gases in magnetic resonance. This included for example materials science, biosensing, imaging, and molecular bioimaging as well as all aspects of gas hyperpolarization. The conference program included 15 invited lectures, 14 contributed talks as well as more than 20 posters.
|
618 |
Sorption of environmentally relevant radionuclides (U(VI), Np(V)) and lanthanides (Nd(III)) on feldspar and micaRichter, Constanze 03 February 2016 (has links)
A safe storage of radioactive waste in repositories is an important task to protect humans and the environment from radio- and chemotoxicity. Long-term safety assessments predict the behavior of potential environmental contaminants like the actinides plutonium, uranium, or neptunium, in the near and far field of repositories. For such safety assessments, it is necessary to know the migration behavior of the contaminants in the environment, which is mainly dependent on the aquatic speciation, the solubility product of relevant solid phases, and the retardation due to sorption on surrounding minerals. Thus, an investigation of sorption processes of contaminants onto different minerals as well as the derivation of mineral specific surface complexation model (SCM) parameters is of great importance.
Feldspar and mica are widely distributed in nature. They occur as components of granite, which is considered as a potential host rock for a repository in Germany, and in numerous other rocks, and thus also in the far field of nearly all repositories. However, their sorption behavior with actinides has only been scarcely investigated until now. In order to better characterize these systems and subsequently to integrate these minerals into the long-term safety assessments, this work focuses on the investigation of the sorption behavior of U(VI), Np(V), and Nd(III) as analogue for An(III) onto the minerals orthoclase and muscovite, representing feldspars and mica, respectively. All investigations were performed under conditions relevant to the far field of a repository.
In addition to the extensive characterization of the minerals, batch sorption experiments, spectroscopic investigations, and surface complexation modeling were performed to elucidate the uptake and speciation of actinides on the mineral surfaces. In addition, the influence of microorganisms naturally occurring on the mineral surfaces and the effect of Ca2+ on U(VI) uptake on the minerals was studied. The obtained sorption curves exhibit a similar characteristic for orthoclase and muscovite. As expected Nd(III) shows the highest amount of sorption followed by U(VI) and finally Np(V). With spectroscopic investigations of the aquatic U(VI) solution in presence of Ca2+, the Ca2UO2(CO3)3 complex could be identified. Furthermore, with spectroscopic methods the U(VI) surface species onto orthoclase could be characterized, of which a novel uranium-carbonate surface species was observed.
Based on the results of batch experiments and spectroscopic methods new SCM parameters for the sorption of U(VI), Np(V), and Nd(III) onto orthoclase and for Np(V) and Nd(III) onto muscovite could be derived. SCM parameters for U(VI) sorption onto muscovite confirmed earlier investigations. The obtained SCM parameters increase the amount of data available for sorption processes onto feldspar and mica. With this the relevance of feldspars for the sorption of actinides and lanthanides could be shown. Thus, this work contributes to a better understanding of interactions of actinides and lanthanides, in particular U(VI), Np(V), and Nd(III), with mineral phases ubiquitous in the environment. This in turn adds confidence to long-term safety assessments essential for the protection of humans and the environment from the hazards of radioactive waste.
|
619 |
Theoretical description of water splitting on TiO2 and combined Mo2C-graphene based materialsRodríguez Hernández, Fermín 08 October 2017 (has links)
The electrocatalytic water decomposition has been investigated in this thesis by means of its two half standard reactions: the oxygen evolution reaction (OER) and the hydrogen evolution reaction (HER). These reactions occur in different locations in a typical electrochemical cell: the anode and the cathode, respectively. Motivated by the lack of understanding about the reaction mechanisms occurring at the anodes and cathodes, we have proposed first: novel representations of typical TiO2 surfaces, based on small cluster systems, which can be used for a quick and more detailed assessment of the OER activities at modified TiO2 surfaces, and secondly we investigated the HER in two sets of model surfaces which represent recently synthesized materials, based on Mo2C and graphene with promising activities toward the HER. We have employed Density Functional Theory (DFT) based methods within both localized and extended basis sets, as implemented in GAMESS and VASP packages, respectively, to examine the structural, electronic and vibrational properties of the proposed models.
We propose new reaction mechanisms for the OER on a number of molecular representations of TiO2 electrodes. For each reaction pathway, the free energy profile is computed, at different biases, from the DFT energies, the entropic and the zero-point energy contributions. The mechanisms explored in this thesis are found to be energetically more feasible than alternative reaction pathways considered in previous theoretical works based on molecular representations of the TiO2 surfaces. The representation of the surface of specific, commonly occurring, titanium dioxide crystals (e.g., rutile and anatase) within the small cluster approximation is able to reproduce qualitatively the rutile (110) outperforming of the anatase (001) surface.
We subsequently investigate the influence of doping TiO2 surfaces with transition metals (TMs) on the performance of TiO2 -based electrodes for the water splitting electrochemical reaction. Two cluster models of the TM-doped active sites which resemble both the TiO2 anatase (001) and rutile (110) surfaces, respectively, are considered for the evaluation of the water decomposition reaction when a Ti is replaced by a TM atom. A set of TMs spanning from Vanadium to Nickel is considered. The late TMs explored here: Fe, Co and Ni are found to reproduce the observed experimental trends for the overpotentials in TiO2-doped electrodes. In the case of Cr and Mn, the present study predicts an enhancement of the OER activity for the anatase-like clusters while a reduction of this activity is found for the rutile-like ones. The vanadium-doped structures do not show relevant influence in the OER activity compared to pure TiO2-based cluster models.
The last part of this work is devoted to the theoretical study of the HER on recently found materials based on the synergistic combination of molybdenum carbide and graphene layers. We propose two major structural models to describe the HER mechanism within the framework of DFT: Mo2C-based clusters adsorbed on carbon nanosheets and the Mo2C (001) surface covered by pure and nitrogen-doped graphene layers. The former system evaluates the influence of Mo2C nanoparticles adsorbed on carbon nanosheets towards the HER. The second one is employed to gain insight about the high HER activity observed in molybdenum carbide anchored on nitrogen-doped porous carbon nanosheets (Mo2C@2D-NPC), recently synthesized. The H-adsorption free energy has been used as a principal descriptor to asses the HER activity at the proposed model active sites. It resembles the value for the best state of the art catalyst for the HER (i.e., platinum at carbon substrate Pt@C) in some of the proposed structural models. Furthermore, a pH-correction is added within a simplified model, to the H-adsorption free energy barrier in every proposed structure. The pH dependence of the H-adsorption free energy barriers allows the assessment of the HER at acidic and alkaline conditions simultaneously. An overall agreement with experimental results is found and further predictions, promoting the development of better HER catalysts, have been done.
|
620 |
Regioselektive Synthese substituierter Carbazol-1,4-chinoneKutz, Sebastian K. 08 March 2016 (has links)
Die Ziele dieser Arbeit waren die Darstellung der Naturstoffe Murrayachinon-B–E und Pyrayachinon-A–C, sowie die Synthese einiger nicht natürlicher, potentiell anti-Tuberkulose-aktiver Carbazole und Carbazolchinone.
Für die Darstellung der aus der Pflanze Murraya euchrestifolia Hayata isolierten Naturstoffe wurden verschiedene synthetische Herangehensweisen untersucht: Die Transformation eines 7 Hydroxycarbazolchinons in die Zielverbindungen gelang nicht, ebenso wie die Syntheseroute über eine trioxygenierte Vorstufe. 7-Methoxy-3-methyl-1-tosyloxycarbazol (A) ließ sich jedoch in einer Ausbeute von 76 % über drei Stufen darstellen. Ausgehend von A konnten die Zielverbindungen regioselektiv in fünf bis sieben Stufen in Gesamtausbeuten von 10 % bis 46 % synthetisiert werden. Der Pyranring in Pyrayachinon-A wurde dabei über eine Sequenz aus Bromierung, Prenylierung, Cyclisierung und Oxidation aufgebaut. Die Anellierung der Pyranringe in Pyrayachinon-B und –C erfolgte, nach Methyletherspaltung an A in zwei Stufen. Die Einführung der Prenyl- und Geranylgruppen für die Synthese der Murrayachinone gelang durch reduktive Pyranringöffnung bzw. über eine Sequenz aus Methyletherspaltung, Propargylierung, partieller Hydrierung und Umlagerung.
Außerdem wurde für Murrayafolin-B, Bismurrayafolin-B und -D über diese Syntheseroute ein Zugang geschaffen. Diese Verbindungen konnten, ausgehend von A, in sechs bzw. sieben Stufen in Gesamtausbeuten von 39 % bis 53 % dargestellt werden.
Im Vergleich zu den bislang beschriebenen Synthesen dieser Verbindungen konnten alle Gesamtausbeuten signifikant gesteigert werden. Besonders hervorzuheben sind die Synthesen von Murrayafolin-B (bislang: 0.4 %, in dieser Arbeit: 40.0 %) und Pyrayachinon-A (bislang: 3.0 %, in dieser Arbeit: 22.1 %). Überdies wurde erstmalig die palladiumkatalysierte oxidative Cyclisierung eines O-tosylgeschützten Diarylamins zu einem Carbazol beschrieben.
In Fortführung vorangegangener Arbeiten wurden zehn bislang nicht beschriebene Derivate des anti-Tuberkulose-aktiven 3-Methoxy-2-methylcarbazol-1,4-chinons dargestellt, darunter neun Carbazolchinone und ein Carbazol. Die Synthese der Carbazolchinone gelang palladiumkatalysiert in je vier bis sechs Stufen. Das Carbazol wurde eisenvermittelt über fünf Stufen dargestellt. Die Untersuchung der Aktivität gegenüber Mycobacterium tuberculosis steht noch aus.
|
Page generated in 0.1703 seconds