Spelling suggestions: "subject:"info:entrepo/classification/ddc/540"" "subject:"info:restrepo/classification/ddc/540""
621 |
Chemical Bonding Models and Their Implications for Bonding-Property Relations in MgAgAs-Type and Related Compounds: A Quantum-Chemical Position-Space StudyBende, David 06 April 2016 (has links)
In this work, chemical bonding models are developed and extended by the aid of the quantum-chemical position-space analysis. The chemical bonding models are then utilized to rationalize and predict the structure and conducting properties of MgAgAs-type and other intermetallic compounds. Additionally, new position-space bonding indicators are developed.
|
622 |
Synthese hierarchischer carbidabgeleiteter Kohlenstoffe aus Holztemplaten und deren AnwendungAdam, Marion 09 June 2016 (has links)
Poröse Kohlenstoffe stellen aufgrund ihrer hohen chemischen und physikalischen Belastbarkeit, hohen spezifischen Oberfläche und einstellbaren Porengrößen eine wichtige Materialklasse in der chemischen Industrie dar. Dabei finden Kohlenstoffe sowohl in der Katalyse, in Adsorptions- und Separationsprozessen und in der Abwasserbehandlung, wie auch in elektrochemischen Energiespeichern Anwendung. In all diesen Applikationen ist eine hohe spezifische Oberfläche des Materials, welche durch das Vorhandensein von Mikroporen erreicht wird, essentiell für eine gute Performance. Rein mikroporöse Systeme weisen allerdings aufgrund der sehr langsamen Diffusion in den kleinen Poren große Probleme im Stofftransport auf, welche zu erheblichem Druckverlust, Verlust an Kapazität und Selektivitätsänderungen führen können. In vielen Anwendungen ist daher die Kombination einer hohen spezifischen Oberfläche und eines guten Stofftransports unabdingbar, woraus das besondere Interesse an der Synthese von hierarchisch strukturierten Kohlenstoffen mit einem hohen Mikroporenanteil für eine hohe spezifische Oberfläche und großen Transportporen (Meso- und/oder Makroporen) resultiert.
Carbidabgeleitete Kohlenstoffe (carbide-derived carbons - CDC) [1, 2], welche einen vorrangig mikroporösen Charakter besitzen, werden durch selektive Ätzung von Metall- oder Halbmetallatome aus Carbiden dargestellt. Die Einführung von Transportporen erfolgt über verschiedene Templatverfahren, wobei synthetische Template meist sehr aufwendig und teuer synthetisiert werden müssen. Aufgrund des hohen synthetischen, finanziellen und materiellen Aufwandes sind daher nur Synthesen im kleinen Maßstab möglich, welche den breiten Einsatz in verschiedenen Anwendungsfeldern stark limitieren. Dem gegenüber stehen Biotemplate, welche sich durch ihre hohe Verfügbarkeit, ihre Nachhaltigkeit und ihre geringen Kosten, welche bis zu 3000-fach [3-6] geringer als synthetische Template sind, auszeichnen. Zudem besitzt Holz als Bio-Templat eine über Jahrmillionen auf Stofftransport optimierte Struktur, welche Holz zu einem vielversprechenden Templat für die Synthese hierarchischer Kohlenstoffe nicht nur aus ökologischer und ökonomischer, sondern vor allem auch aus wissenschaftlicher Sicht macht. Über die Verknüpfung des CDC-Prozesses mit Holz als Bio-Templat können so hierarchisch strukturierte Kohlenstoffmaterialien mit hohen Oberflächen und einem guten Transportsystem synthetisiert werden, welche die Möglichkeit zum Einsatz in einem breiten Anwendungsbereich bieten.
Durch einen einfachen Zwei-Stufen-Prozess bestehend aus Imprägnierung eines flüssigen SiC-Präkursors und anschließender Hochtemperturchlorierung (Abbildung 1) war es möglich, hierarchisch strukturierte Kohlenstoffe unter Erhalt der typischen Holzmikrostruktur mit großen Transportporen und zusätzlichem mikoporösem Charakter, durch den eingebrachten CDC-Kohlenstoff, zu synthetisieren. Die Porengrößen und -verteilung sind dabei stark von der Holzart, der Chlorierungstemperatur und den Parametern des Imprägnierprozesses abhängig. Es konnte ein linearer Zusammenhang zwischen eingebrachter Siliziumcarbidmenge und der spezifischen Oberfläche des resultierenden Kohlenstoffmaterials ermittelt werden, welcher ein gezieltes Design der Holz-CDC-Materialien in Bezug auf Oberfläche und Porenvolumen/-größe ermöglicht. Neben der makroporösen Zellstruktur des Holzes konnte zudem die makroskopische Form während des gesamten Prozesses vollständig erhalten werden, welches die gezielte Synthese von Formkörpern, wie Monolithen, ermöglicht. Die Synthese von Holz-CDC-Materialien bietet daher einen großen ökonomischen Vorteil gegenüber herkömmlichen Kohlenstoffsynthesen, in denen meist pulverförmige Produkte entstehen, welche dann zur Nutzung in verschiedenen Anwendungen durch Presswerkzeuge oder den Zusatz von Bindermaterialien in Formkörper gebracht werden müssen.
Zur weiteren Steigerung der Oberfläche und des Porenvolumens wurden Voraktivierungen am Holztemplat durchgeführt. Hierbei wurden sowohl physikalische Aktivierungsmethoden mit Wasserdampf oder Kohlenstoffdioxid, wie auch chemische Aktivierungsmethoden mit Säuren und Basen untersucht. Über den Aktivierungsprozess wurde eine zusätzliche Porosität in die Holzmatrix eingebracht, wodurch nach anschließendem Imprägnierprozess und Hoch-temperaturhalogenierung Holz-CDC-Materialien mit trimodalem Porensystem bestehend aus Mikro-, Meso- und Makroporen mit Oberflächen von bis zu 1800 m^2/g und Porenvolumina bis zu 1,0 cm^3/g erzielt werden konnten.
Aufgrund ihrer guten Leitfähigkeit, hohen Oberfläche und porösen Eigenschaften stellen Kohlenstoffe interessante Kathodenmaterialien für die Lithiumschwefelbatterie dar. Trotz intensiver Forschungen in den letzten 10 Jahren konnten die Herausforderungen einer hohen Zyklenstabilität, Ratenstabilität und Zellkapazität, sowie geringer Elektrolytmengen bis heute nicht zufriedenstellend gelöst werden. Hierarchisch strukturierte Kohlenstoffmaterialien, welche „Reaktions- und Transportporen“ besitzen, stellten sich als vorteilhaftes Kathodenmaterial heraus. Die longitudinal ausgerichteten Makroporen (Transportporen) der Holz-CDCs ermöglichen einen schnellen Ionentransport, welcher auch bei hohen Lade- und Entladeraten stabile Kapazitäten ermöglicht. Dem gegenüber setzen die Mikroporen (Reakionsporen) die Löslichkeit der Polysulfide herab, welches eine gute Ratenstabilität über 100 Zyklen zur Folge hat. Es konnten mit den synthetisierten Holz-CDC-Materialien stabile Kapazitäten über 580 mAh/gSchwefel mit hohen Stromdichten von 20 mA/cm^2 (2C) und sehr geringen Elektrolytmengen von nur 6,8 µl/mgSchwefel erzielt werden. Diese Daten zeigen eine deutliche Verbesserung zu den in der Literatur bisher veröffentlichten Werten [3,7].
Neben dem Einbringen einer zusätzlichen Porosität werden durch den chemischen Aktivierungsprozess Oberflächenfunktionalitäten an der Kohle gebildet. Diese Oberflächen-funktionalitäten können vor allem in der Adsorption von polaren Verbindungen essentiell für eine hohe Adsorptionskapazität sein. Quecksilber stellt ein giftiges Element dar, welches anthropogen durch die Kohleindustrie jährlich mit ca. 4000 t freigesetzt wird. Die Entfernung von Quecksilber aus Industrieabgasen erfolgt über dessen Lösung in Wasser und anschließende adsorptive Prozesse, wobei Kohle als Adsorbens Einsatz findet. Untersuchungen der Holz-CDC-Materialien zeigten hohe Quecksilber-Adsorptionskapazitäten von 242 mgHg/gKohle. Gegenüber herkömmlichen kommerziellen Aktivkohlen [8] mit 12 mg/g und neuartigen Aktivkohlen auf Bio-Basis [8] mit 150 mg/g, zeigen die untersuchten Holz-CDC-Materialien 1,5- bis 200-fach höhere Aufnahmekapazitäten. Bei diesen ersten proof-of-principle-Untersuchungen konnte das hohe Potential holzbasierter CDC-Materialien für die Anwendung in Adsorptionsprozessen gezeigt werden, welches eine deutliche Steigerung der Kapazität durch weitere zukünftige Optimierungen des Materials verspricht.
Holz kann ebenfalls Anwendung zur Synthese hochporöser Kohlenstoffstäbchen finden. Hierbei wird die Holzstruktur vollständig mit Siliziumcarbid gefüllt. Nach der anschließenden Entfernung des Holztemplates über Calcination bleibt die Negativstruktur des Holzgerüstes als stäbchenförmige Strukturen erhalten. Durch nachfolgende Reinigung und Hochtemperatur-chlorierung können die SiC-Stäbchen in rein mikroporöse CDC-Stäbchen umgewandelt werden, welche sehr hohe spezifische Oberflächen von bis zu 3680 m^2/g und Porenvolumina von bis zu 1,6 cm^3/g besitzen. Aufgrund ihres unpolaren Charakters und der hohen spezifischen Oberfläche sind diese Strukturen besonders für die Adsorption von aromatischen, gering bzw. nicht polaren Verbindungen geeignet. Das adsorptive Verhalten der Stäbchenstrukturen wurde bei der Adsorption von Methylenblau, einer in der Literatur häufig verwendeten Beispielsubstanz für die Adsorption voluminöser aromatischer Verbindungen, und von Diclofenac untersucht. Diclofenac ist ein Schmerzmittel, welches vor allem bei Rheuma eingesetzt wird und mit ca. 63 t/Jahr in Deutschlands Wassersysteme eingetragen wird. Die schlechte Abbaubarkeit und die unzureichende Entfernung von Diclofenac über herkömmliche Abwasseraufbereitungsanlagen haben in den letzten Jahren zu einer deutlichen Anreicherung des Medikamentes in der Umwelt geführt. Die Entfernung von Diclofenac hat, neben der Entfernung anderer aromatischer Medikamente, wie Ibuprofen und Carbamazepin, in den letzten 10 Jahren daher deutlich an Bedeutung gewonnen. CDC-Stäbchen zeigen im Vergleich zu herkömmlichen Kohlenstoffen, wie Printex oder Hydraffin P800, fast doppelt so hohe Aufnahmekapazitäten für Methylenblau unter ähnlich schnell ablaufender Adsorptionkinetik. Auch Diclofenac kann an den CDC-Stäbchen mit 580 mg/g deutlich besser adsorbieren als an Hydraffin P800, welche eine Kapazität von 490 mg/g zeigt. Bedenkt man, dass es sich bei Hydraffin P800 (Firma: Donau Carbon) um eine für die Adsorption von organischen Wasserschadstoffen optimierte Aktivkohle handelt, wird das hohe Potential der unoptimierten CDC-Stäbchen deutlich.
[1] V. Presser, M. Heon, Y. Gogotsi, Adv. Funct. Mat., 2011, 21, 810.
[2] L. Borchardt, M. Oschatz, S. Kaskel, Materials horizon , 2014, 1, 157.
[3] C. Hoffmann, S. Thieme, J. Brückner, M. Oschatz, T. Biemelt, G. Mondin, H. Althues, S. Kaskel, ACS Nano, 2014, 8, 12, 12130.
[4] M. Oschatz, L. Borchardt, M. Thommes, K.A. Cychosz, I. Senkovska, N. Klein, R. Frind, M. Leistner, V. Presser, Y. Gogotsi, S. Kaskel, Angew. Chem. Int. Ed., 2012, 51 (13), 7577.
[5] M. Adam, P. Strubel, L. Borchardt, H. Althues, S. Dörfler, S. Kaskel, Journal of Materials Chemistry A, 2015, accepted, DOI: 10.1039/C5TA06782K
[6] M. Adam, M. Oschatz, W. Nickel, S. Kaskel, Micro. Meso. Mater., 2015, 210, 26.
[7] Z. Wei Seh, W. Li, J. J. Cha, G. Zheng, Y. Yang, M. T. McDowell, P.-C. Hsu , Y. Cui , Nat. Commun., 2013, 4 , 1331.
[8] M. Zahibi., A. Ahmadpour, A. Haghighi Asl, J. Hazard. Mater., 2009, 167, 230.
|
623 |
Synthesis of silicon- and germanium-rich phases at high-pressure conditionsCastillo Rojas, Rodrigo Esteban Antonio 10 August 2016 (has links)
The main focus of the present work was the Ge-rich part of the binary Ba – Ge system, in which by inspecting the behavior of the clathrate-I Ba8Ge43 under pressure, several new phases were found. The new phases in this system have the following compositions: BaGe3 (with two modifications), BaGe5, BaGe5.5 and BaGe6, therefore they are quite close in composition range: 75% - ~85% at. Ge.
Concerning the conditions required for the synthesis of each phase, several combinations of temperature and pressure were employed in order to find a stability range. It was possible to establish such a formation range for all phases. In some cases two phases were found for a given conditions and in many other cases three or more phases were found to coexist. Thus, the stability range of pressure and temperature for single phase formation turned out to be very narrow.
By inspecting of some structural features, for instance the interatomic distances, it is found that the average of the Ge – Ge distances change in line with the composition, i.e. the shorter contacts belong to BaGe6 while the longer distances are present in BaGe3 (both modification). An opposite trend is observed for the calculated density of each phase (neglecting the tI32 form of BaGe3): the lower density is found for BaGe3 and the denser compound is found to be BaGe6. Of course this is not coincidence, since due to the Ge content, BaGe6 has the largest molar mass. Similarly, by examining the density as a function of the interatomic distance. In such case, the denser compound is characterized by shorter Ge – Ge contacts, while the less dense phase holds the longest Ge – Ge contacts. This is in agreement with the building motifs within each crystal structure: columns in BaGe3 (open framework) passing through layers in BaGe5, ending in a three-dimensional network (closed framework) in BaGe6.
|
624 |
Kinetically controlled synthesis of PdNi bimetallic porous nanostructures with enhanced electrocatalytic activityZhu, Chengzhou, Wen, Dan, Oschatz, Martin, Holzschuh, Matthias, Liu, Wei, Herrmann, Anne-Kristin, Simon, Frank, Kaskel, Stefan, Eychmüller, Alexander 26 August 2016 (has links)
No description available.
|
625 |
Improvement and analysis of paper properties by adding modified polysaccharidesNguyen, Hoang Chung 21 September 2016 (has links)
Polysaccharides are now popularly used in paper technology since they are able to improve mechanical properties of the paper. Xylan and pectin are two natural polymers that have a wide range of applications nowadays. These two polysaccharides can be used in their native forms as well as derivatives. In this study, xylan and pectin were modified to obtain cationic derivatives before adding into the paper for enhancement.
The work was motivated by the fact that xylan and pectin share the same negative surface properties as cellulose. This leads to a slight repulsion effect between them once they are close. Their cationic derivatives, therefore, are believed to strengthen the paper due to electrostatic interactions between two oppositely charged objects beside hydrogen bonds.
To fulfil the purposes, oat spelt xylan and apple pectin were chemically modified using different modification methods, including oxidation, amidation, and a combination of these two methods. A quantitative method to determine the adsorbed amount and relative retention capacity of xylan onto paper using high performance liquid chromatography was also developed.
The results show that oat spelt and apple pectin, as well as their modified derivatives, can improve the paper mechanical properties. The oat spelt xylan significantly enhances the tensile strength, however, this contribution has a saturation level in correlation with the relative retention capacity of the xylan onto cellulose. The best retention capacity is achieved when 5% of xylan is added. This finding provides a practical approach to the application of xylan as a paper additive in consideration of economic issues.
Although the application of apple pectin and its amidated derivatives in paper is rather rare, some interesting points have been discovered in this work. Among the apple pectin samples used, only the ones with low degree of esterification give a slight enhancement in tensile index at 5% dosage. The results also suggest that the dosage of the pectin added into the paper should not exceed 5% due to its viscous property at high concentrations.
|
626 |
Synthesis and Characterization of Mn-rich Heusler alloys for magnetocaloric applicationsFichtner, Tina 11 July 2016 (has links)
New magnetocaloric Heusler alloys with larger magnetocaloric effects need to function in relatively low applied magnetic fields ≤ 1 T. Therefore, the emphasis of this Ph.D. thesis was to understand how the first order magnetostructural transformation in Mn-rich Ni-based rare-earth free magnetocaloric Heusler alloys works and to use this understanding for the design of new Mn-rich Ni-based rare-earth free magnetocaloric Heusler alloys. In this context, the rare-earth free, non-toxic, and environmentally friendly Heusler series: Ni2−xMn1+xSn, Mn50Ni50−ySny, and Ni-(Co-)Mn-In were systematically studied. In detail, it pointed out that in the Heusler series Ni2−xMn1+xSn, the structure and the disorder character can be predicted by using simple rules. On the other hand, an isoplethal section of the Heusler series Mn50Ni50−ySny was derived, which is very useful for the design of new magnetocaloric materials. In addition to it, in the Heusler alloy Ni49.9Mn34.5In15.6 a large saturated magnetic moment and a reversible magnetocaloric effect at its purely second order magnetic phase transition was present, which is in reasonable agreement with ab initio calculations. Finally, the effect of post-annealing on the Heusler alloy Ni45.2Co5.1Mn36.7In13 revealed that the magnetocaloric effect could be tuned and improved significantly. Consequently, this work shows that the Heusler alloys are promising candidates for magnetocaloric applications.
|
627 |
Synthese und Charakterisierung lösungsprozessierbarer und vernetzbarer Methacrylat-Copolymere für den Einsatz als Dielektrika in der organischen ElektronikBerndt, Andreas 07 October 2016 (has links)
Der Einsatz von organischen Materialien, insbesondere von Polymeren, hat zahlreiche Vorteile gegenüber dem Einsatz klassischer Materialien in der Mikroelektronik. Zu diesen zählen Flexibilität, geringes Gewicht, Verarbeitbarkeit durch Verfahren aus Lösung bei Raumtemperatur ohne Notwendigkeit vakuumbasierter Prozesse zur Abscheidung und vieles mehr. Dies ermöglicht eine energie- und kosteneffiziente Herstellung elektronischer Bauteile wie organische Feldeffekttransistoren (OFETs) oder Leuchtdioden (OLEDs), welche durch Prozesse wie dem Rolle-zu-Rolle-Druckverfahren nicht länger auf kleine Flächen begrenzt sind.
Zur Herstellung polymerbasierter OFETs mit optimiertem Eigenschaftsprofil sind neben innovativen Halbleitern vor allem auch neue Dielektrika mit verbesserten elektrischen Eigenschaften erforderlich, zu deren Entwicklung die vorliegende Arbeit beitragen sollte. Das häufig verwendete Polymethylmethacrylat ist für den Einsatz als Gate-Dielektrikum für die organische und gedruckte Elektronik nur bedingt geeignet. Es zeigt einige Nachteile wie eine mangelnde Stabilität gegenüber bestimmten organischen Lösungsmitteln, was zu Quellung oder Anlösen des Dielektrikums während des Aufbringens weiterer Schichten führen kann. Durch Copolymerisation von Methylmethacrylat mit funktionalisierten Comonomeren sollten die Probleme gelöst und optimierte Methacrylat-Copolymere entwickelt werden.
Die Copolymere wurden über freie radikalische sowie RAFT-Polymerisation synthetisiert. Allen gemeinsam sind vernetzbare Comonomere, um die Lösungsmittelstabilität zu verbessern und somit die Durchbruchfeldstärke des Dielektrikums zu erhöhen. Als Vernetzer wurden 4-Benzoylphenylmethacrylat (BPMA) oder Propargylmethacrylat (PgMA) gewählt. BPMA ist UV-vernetzbar, Copolymere mit PgMA können in Gegenwart von mehrfunktionalen Aziden wie 1,3,5-Tris(azidomethyl)benzen (TAMB) durch Click-Reaktion thermisch vernetzt werden. Ein weiterer Aspekt ist die Erhöhung der relativen Permittivität des Dielektrikums zur Steigerung der Kapazität der dielektrischen Schicht, wodurch unter anderem die Betriebsspannung des Transistors reduziert werden kann. Dieses Ziel sollte durch Komposite mit BaTiO3-Nanopartikeln erreicht werden.
Zusätzlich zur Steigerung der Permittivität kann dies durch Verringerung der Filmdicke realisiert werden, was jedoch vermehrt zu Leckströmen führen könnte. Neben den dielektrischen Materialeigenschaften spielt vor allem auch die Grenzfläche zwischen Dielektrikum und Halbleiter eine wesentliche Rolle. Um die Interaktionen an dieser zu verbessern, wurden Comonomere mit selbstorganisierenden Seitenketten in die Polymerstruktur eingebracht. Die Kombination dieser Dielektrika mit chemisch angepassten Halbleitern mit vergleichbaren Seitenkettenfunktionalitäten soll dazu führen, dass die beiden Komponenten durch die Seitenketten verstärkt miteinander wechselwirken.
Monomersynthesen sowie anschließende Copolymerisationen waren in hohen Ausbeuten und ausreichenden Molmassen bezüglich der Copolymere erfolgreich. Die strahleninduzierte Vernetzung konnte durch systematische Untersuchungen optimiert und die thermische Vernetzung bei moderaten Temperaturen nachgewiesen werden. Die Vernetzbarkeit von Copolymeren mit selbstorganisierenden Seitenketten erwies sich als gehindert. Hierfür wurde ein Vorschlag zur Erhöhung der Flexibilität der Vernetzerseitenkette unterbreitet. Für die Copolymere P(MMA/BPMA) und P(MMA/PgMA) konnten die Durchbruchfeldstärken in Folge der Vernetzung von < 0.3 MV/cm für PMMA auf bis zu mehr als 5 MV/cm gesteigert werden. BaTiO3-Nanopartikel konnten durch geeignete Methoden erfolgreich synthetisiert werden.
Durch Variation der Reaktionsbedingungen war eine gezielte Steuerung der Primärpartikelgröße möglich. So wurden Partikel der Größe < 10 nm, 26 nm und 55 nm realisiert. Die Dispersion der Partikel in organischen Lösungsmitteln sowie in der Polymermatrix war stark abhängig von der Größe der Primärartikel, der Oberflächenmodifikation sowie der Neigung zur Agglomeration. Modifizierte Partikel mit einem Durchmesser < 10 nm konnten sehr gut in Lösungsmitteln wie auch in der Polymermatrix dispergiert werden (Abbildung 2). Eine Steigerung der relativen Permittivität der Nanokomposite blieb jedoch aufgrund der zu geringen Größe der Primärpartikel aus. Darüber hinaus wurden deutlich schlechtere Durchbruchfeldstärken beobachtet.
Copolymere mit der Fähigkeit zur Selbstorganisation sollten durch zwei Konzepte realisiert werden. Im ersten System führte die Polymerisation von x-[4-(4´-Cyanophenyl)phenoxy]alkylmethacrylaten mit Spacerlängen von x = 6 und x = 8 nur in Homopolymeren zu ausgeprägter Selbstorganisation. Copolymere mit 50 mol% waren weitgehend isotrop und wiesen zudem ungenügende dielektrische Eigenschaften auf. Das zweite System basiert auf semifluorierten Methacrylat-Copolymeren mit H10F10-Seitenketten (10 CH2- und 10 CF2-Gruppen). Diese zeigten schon ab einem Gehalt von circa 35 mol% gute Selbstorganisation und bildeten ein geordnetes alternierendes Schichtsystem aus Haupt- und Seitenketten im Bulk und in dünnen Filmen. Die dielektrischen Eigenschaften können mit denen bekannter fluorierter Polymerdielektrika wie CYTOP konkurrieren. Damit stehen die semifluorierten Copolymere zukunftsorientiert zur Kombination mit Halbleitern, welche die gleichen Seitenkettenfunktionalitäten tragen, bereit, um so durch starke Interaktionen zwischen Dielektrikum und Halbleiter die Grenzfläche zu optimieren.
Mit thermisch vernetztem P(MMA/PgMA) konnten OFETs mit den Halbleitern Pentacen bzw. C60 erfolgreich hergestellt und vermessen werden. Beide Transistoren liefern gute und mit Literaturwerten vergleichbare Kenngrößen. Die Ladungsträgermobilitäten und Ion/Ioff-Verhältnisse betragen 0.3 cm²/Vs und 6.0x10^5 im Pentacen-basierten Transistor beziehungsweise 1.3 cm²/Vs und 4.4x10^5 im OFET mit dem Halbleiter C60.
Damit konnte in dieser Arbeit die Steigerung der Durchbruchfeldstärke durch geeignete Vernetzung der Copolymere realisiert werden. Die thermische Vernetzung fand bei deutlich geringeren Temperaturen als zahlreiche in der Literatur beschriebene Reaktionen statt. Die Synthese und Modifizierung von BaTiO3-Nanopartikeln und auch die Bildung entsprechender PMMA-BaTiO3-Nanokomposite war erfolgreich, führte jedoch nicht wie erwartet zu einer Steigerung der relativen Permittivität der Dielektrika-Schichten.
Vernetzbare und selbstorganisierende semifluorierte Methacrylat-Copolymere konnten polymerisiert und charakterisiert werden und stehen als innovative dielektrische Materialien für Untersuchungen in OFETs zur Verfügung. Das Copolymer P(MMA/PgMA) wurde zielführend in organischen Feldeffekttransistoren eingesetzt und führte zu guten elektrischen Eigenschaften der Bauteile.
|
628 |
Bildung von Kolloiden des tetravalenten Urans unter Einfluss von Silikat in neutralen und schwachalkalischen wässrigen SystemenUlbricht, Isabell 28 October 2016 (has links)
Diese Arbeit umfasst die Präparation sowie Charakterisierung von neuartigen Uran(IV)-Kolloiden, die in nahneutralen pH-Bereichen und unter umweltrelevanten Bedingungen stabilisiert vorliegen. Rückschlüsse auf Stabilitätsverhalten und Partikelgrößenverteilungen wurden durch dynamische Lichtstreuung, Zetapotentialmessungen sowie Ultrafiltration und Ultrazentrifugation in Kombination mit Elementanalysen getroffen. UV-Vis- und Laserfluoreszenzspektroskopie bestätigten den tetravalenten Zustand des Urans bei den Experimenten. Anders als bisherige Untersuchungen vermuten lassen, ist es möglich langzeitstabile Uran(IV)-Kolloide in höheren Konzentrationen zu erzeugen. Durch Zusatz von geochemischen Komponenten, wie Carbonat und Silikat sind diese sedimentationsstabil und im nahneutralen bis basischen pH-Bereich über längere Zeiträume beständig. Dabei zeigte sich, dass gelöstes Silikat bei der Herstellung der Kolloide eine wesentliche Rolle spielt und Uran(IV) bis zu einer Konzentration von 10-3 mol/L, entsprechend 0,238 g/L in Lösungen stabilisieren kann. Diese Urankonzentration ist dabei ca. drei Potenzen höher als für bisher bekannte silikatfreie, wässrige Uran(IV)-Kolloide.
Durch die Verwendung unterschiedlicher analytischer Methoden konnte gezeigt werden, dass die Durchmesser der entstandenen Uran(IV)-Kolloide im nanoskaligen Bereich von teilweise unter 20 nm liegen. Durch diesen kolloidalen Zustand kann eine hohe Mobilität in aquatischen Systemen unterstellt werden. Zusätzlich weisen Langzeituntersuchungen darauf hin, dass diese Kolloide in einem abgeschlossenen System über Jahre stabilisiert werden. Je höher dabei das Verhältnis zwischen Silikat- und Uran(IV)-Gehalt und je höher der pH-Wert der Lösung ist, desto kleiner und stabiler sind diese Partikel. Es ist anzumerken, dass sich keine Kolloide in Abwesenheit von Uran(IV) bilden.
Silikat ist in der Lage, die negative Oberflächenladung der Uran(IV)-Kolloide im nahneutralen pH-Bereich zu erhöhen. Dies führt zu einer stärkeren elektrostatischen Abstoßung bzw. repulsiven Wechselwirkungen, womit eine bessere Stabilisierung gewährleistet wird. Der isoelektrische Punkt der erzeugten Partikel wird zu niedrigeren pH-Werten verschoben. Extended-X-ray-absorption-fine-structure-Untersuchungen zeigen, dass die innere Struktur der Kolloide durch den steigenden Silikatgehalt bei deren Bildung von U-O-U-Bindungen (entsprechend Uran(IV)oxyhydroxiden) zu U-O-Si-Bindungen verändert wird. Die Koordination in der benachbarten Region von U(IV) in den U(IV)-Silikat-Kolloiden ist vergleichbar mit der des Coffinits, USiO4. Dieses, für tetravalentes Uran noch nicht beschriebene Phänomen, wurde bereits bei silikatstabilisierten Eisen(III)- oder Mangan(III,IV)-Kolloiden beobachtet und als „Sequestrierung“ bezeichnet.
Die silikatstabilisierten U(IV)-Kolloide sind in Laborexperimenten unter kontrollierten Bedingungen erzeugt worden, d.h. es ist noch nicht bekannt, ob diese Phasen in der Natur frei auftreten können. Die qualitative Zusammensetzung der Matrix der experimentellen Lösungen (H+, OH-, Na+, HCO3-/CO32-, Silikat) wurde ähnlich der geochemischen Natur von Grund- bzw. Porenwässern gewählt. Dadurch kann prinzipiell von einem Vorhandensein solcher Kolloide in Wässern natürlichen Ursprungs ausgegangen werden. Die Existenz solcher Partikel würde eine Erklärung für das beobachtete Auftreten von Uran(IV)-Kolloiden in anoxischen Porenwässern oder anoxischen Grundwässern liefern. Es ist jedoch zu beachten, dass experimentell die Reduktion von Uran(VI)-Phasen vorausgesetzt wurde und eine anschließende Verdünnung in Anwesenheit von Silikat erfolgt.
Umweltbezogene Untersuchungen zur Mobilität und Stabilität in aquatischen Systemen dieser Kolloide waren nicht Gegenstand der Arbeit und so kann eine umweltrelevante Beurteilung dieser neuartigen Uran(IV)-Kolloide in Bezug auf den Eintrag in die Biossphäre noch nicht getroffen werden. Die hier präsentierten Ergebnisse bieten aber die Grundlage für weitere, intensive Untersuchungen zu Möglichkeiten der Mobilisierung und Stabilisierung verwandter Actinide und Schwermetalle und sollten Bestandteil der Sicherheitsanalyse bei der Lagerung radioaktiven Abfälle in tiefen geologischen Formationen sein. / This work includes the preparation and characterization of new uranium(IV) colloids which are formed and stabilized in the near neutral pH range and under environmentally relevant conditions. Conclusions on stability behavior and particle size distributions were drawn based on results obtained by dynamic light scattering, zeta potential measurements, as well as ultrafiltration and ultracentrifugation in combination with element analyzes. Spectroscopic methodes confirmed the tetravalent state of uranium in the experiments. Unlike empirical data, it is possible to generate long-term stable uranium(IV) colloids at higher concentrations. By addition of geochemical components such as carbonate and silicate, they are stable and resistant in the near neutral pH range over a long period. It was found that dissolved silica plays an essential role in the preparation of colloids. Colloid-borne uranium(IV) up to a concentration of 10-3 mol/L, corresponding to 0,238 g/L, is stabilized in solutions. This concentration is about three orders of magnitude higher than so far known silicate-free aqueous uranium(IV) colloids.
Through the use of different analytical methods (invasive and non-invasive) it could be shown that the resulting uranium(IV) colloids are in the nanoscalar range. A high mobility can be assumed in aquatic systems. Evidence is provided by photon correlation spectroscopy, ultrafiltration, and ultracentrifugation that uranium(IV) can form silicate-containing colloids of a size lower than 20 nm. The particles are generated in near neutral to slightly alkaline solutions containing geochemical relevant components (carbonate, silicate, sodium ions). They remain stable in aqueous suspension over years. Electrostatic repulsion due to a negative zeta potential in the near-neutral to alkaline pH range caused by the silicate stabilizes the uranium(IV) colloids. The isoelectric point of the nanoparticles is shifted towards lower pH values by the silicate. The higher the silicate to uranium(IV) content ratio and the higher the pH of the solution are, the smaller and more stable (in terms of pH-changes) are the particles. It should be noted that no colloids were formed in absence of uranium(IV).
The mechanism of the colloidal stabilization can be regarded as “sequestration” by silicate, a phenomenon well known from heavy metal ions of high ion potential such as iron(III) or manganese(III,IV), but never reported for uranium(IV) so far. Extended X-ray absorption fine structure (EXAFS) spectroscopy showed that U–O–Si bonds, which increasingly replace the U–O–U bonds of the amorphous uranium(IV) oxyhydroxide with increasing silicate concentration, make up the internal structure of the colloids. The next-neighbor coordination of uranium(IV) in the uranium(IV)-silica colloids is comparable with that of coffinite, USiO4. The assessment of uranium behavior in the aquatic environment should take the possible existence of uranium(IV)-silica colloids into consideration. Their occurrence might influence uranium migration in anoxic waters. The silicate-stabilized colloids have been generated in laboratory experiments under controlled conditions; i.e., it is not known yet whether these phases can occur in natural water. The qualitative composition of the matrix of the experimental solutions (H+, OH-, Na+, HCO3-/CO32-, silicate) was chosen similar to the geochemical nature of groundwater. Thereby, it can be assumed that such colloids are present in natural waters. The existence of such particles would provide an ex-planation for the occurrence of uranium(IV) colloids in anoxic pore waters or groundwaters. However, it should be noted that these results were observed by the reduction of uranium(VI) carbonate and dilution in the presence of silicate.
Studies on the mobility and stability of these colloids in aquatic systems were not subject of this work and an environmental assessment of these novel uranium(IV) colloids with respect to the entry in the biosphere cannot be taken into account. But the possibilities of mobilization and stabilization can be applied to surrogate actinides and heavy metals, and point to the need for more intensive research in this area.
|
629 |
Dendritische Glykopolymere und deren Polyelektrolytkomplexe als effiziente Drug-Delivery-Systeme für die verzögerte Wirkstofffreisetzung aus CalciumphosphatzementStriegler, Christin 17 November 2016 (has links)
Das multiple Myelom ist eine seltene maligne Knochenerkrankung bei insbesondere älteren Menschen. Dabei vermehren sich im Knochenmark in hohem Maße unkontrolliert entartete Plasmazellen. Diese Myelomzellen unterdrücken einerseits die Bildung von normalen Plasmazellen, andererseits wird das Gleichgewicht zwischen Knochenaufbau und –abbau empfindlich gestört, woraus eine erhöhte Knochenresorption resultiert. Neben den bisher angewandten Chemo- und Strahlentherapien gewinnen innovative Medikamente, wie Proteasominhibitoren und Bisphosphonate, in der Therapie an Bedeutung. Diese Medikamente reduzieren das Myelomzellwachstum und wirken hemmend auf den Knochenabbau.
Durch das Auffüllen von durch Resorptionsprozesse geschädigten Knochendefekten mit wirkstoffbeladenen Calciumphosphatzementen (CPC) wird nicht nur der Knochen stabilisiert, sondern im Vergleich zur herkömmlichen oralen oder intravenösen Medikamentenverabreichung eine gezielte Freisetzung des Wirkstoffes direkt am Wirkort in wesentlich reduzierten Dosen ermöglicht. Durch die Kombination des Knochenzementes mit anderen effizienten Drug-Delivery-Systemen (DDS), wie z. B. Polymeren, kann eine optimale Anpassung der Wirkstofffreisetzung ermöglicht werden. Insbesondere haben sich bereits dendritische Polymere aufgrund ihrer globularen Struktur und Vielzahl an peripheren Funktionalitäten als besonders geeignete Wirkstoffträgersysteme herausgestellt. Bei der Anwendung im physiologischen System spielt insbesondere die Biokompatibilität dieser polymeren DDS eine entscheidende Rolle. Durch Modifizierung der peripheren Gruppen mit biokompatiblen Einheiten, wie Oligosacchariden oder Aminosäuren, kann die physiologische Verträglichkeit signifikant erhöht werden.
Für die Behandlung des multiplen Myeloms am Knochen sollte in dieser Arbeit ein geeignetes dendritisches DDS auf Basis von hochverzweigtem Polyethylenimin (PEI) synthetisiert und charakterisiert werden. Das DDS sollte dabei verschiedene Anforderungen, wie eine hohe Wasserlöslichkeit und Biokompatibilität, erfüllen. Weiterhin sollten die mechanischen Eigenschaften des CPC nicht negativ beeinflusst werden und der Wirkstoff sollte effektiv vom DDS aufgenommen und kontrolliert aus dem generierten Komposit (Wirkstoff/DDS/CPC) freigesetzt werden.
In der sogenannten N-Carboxyanhydrid (NCA)-Polymerisation wurden am PEI(5) (5 ≙ Mw 5 kDa) benzylgeschützte Polyglutaminsäure bzw. Polyasparaginsäureketten aufgepfropft. Durch hydrolytische Abspaltung der Schutzgruppen an den PBLG-Ketten von PEI(5)-PBLG-346 und PEI(5)-PBLA-346 erfolgte die Generierung der wasserlöslichen DDS PEI(5)-PGlu-346 und PEI(5)-PAsp-346. Die Charakterisierung der synthetisierten Kern-Schale-Architekturen PEI(5)-PBLG-346, PEI(5)-PBLA-346, PEI(5)-PGlu-346 und PEI(5)-PAsp-346 zeigte, dass nur wenige lange Polyaminosäureketten an wenigen primären und sekundären Aminogruppen des PEI(5) aufgebaut wurden. Aufgrund der noch freien primären und sekundären Aminogruppen am PEI(5) und den peripheren Aminogruppen an den Polyaminosäureketten wurden durch die Anbindung von Maltose- bzw. Laktoseeinheiten Kern-Schale-Architekturen mit einer binären Doppelschalenstrukturen erzeugt. Im Gegensatz zu reiner Polyglutaminsäure zeigten die mit Glutaminsäure modifizierten Polymerstrukturen PEI(5)-PGlu-346 und PEI(5)-PGlu-346-Mal interessante strukturelle Eigenschaften in wässriger Umgebung. Aufgrund des pH-abhängigen Ladungszustandes resultiert bei reinen Polyglutaminsäureketten normalerweise der typische Helix-Coil-Übergang. Dabei findet eine Konformationsumwandlung der α-helikalen Struktur zur ungeordneten Sekundärstruktur statt. Im Falle der PEI(5)-PGlu-346- und PEI(5) PGlu-346-Mal-Copolymere wurde jedoch keine α-helikale Konformation bei niedrigem pH-Wert nachgewiesen. Die PGlu-Ketten der wasserlöslichen Kern-Schale-Architekturen bildeten sowohl im sauren, als auch im basischen pH-Wertbereich eine ungeordnete Sekundärstruktur aus. Zusätzlich konnte nachgewiesen werden, dass die Kern-Schale-Architekturen in Abhängigkeit vom pH-Wert als isolierte Makromoleküle bzw. Aggregate mit unterschiedlich lang gestreckten Peptidketten vorliegen. Die Ursache dafür sind nicht-kovalente, intra- und intermolekular wirkende Kräfte.
Zur Beurteilung der Kern-Schale-Architekturen als geeignete DDS wurde die Komplexierung des Proteasominhibitors Bortezomib (BZM) in die reinen Copolymere PEI(5)-PGlu-346, PEI(5)-PGlu-346-Mal und PEI(25)-Mal B (25 ≙ Mw 25 kDa, ohne Polyglutaminsäureketten) sowie deren Polyelektrolytkomplexe untersucht. Dabei wurden Copolymer/BZM- bzw. PEK/BZM-Komplexe in verschiedenen Verhältnissen hergestellt und die Komplexierungskapazität durch zeitabhängige Ultrafiltration UV/Vis-spektroskopisch ermittelt. Im Vergleich zu den glutaminsäuremodifizierten Copolymeren wurde durch PEI(25)-Mal B etwa doppelt so viel Wirkstoff in verschiedenen wässrigen Systemen aufgenommen. Der Grund dafür ist der größere PEI-Kern und die dementsprechend höhere Anzahl an peripheren Aminogruppen mit gebundenen Maltoseeinheiten. Die PEK zeigten im Vergleich zu den Copolymeren keine Verbesserung der Komplexierungskapazität.
Um eine effektive Wirkstofffreisetzung für eine dosierte Langzeittherapie aus dem Kompositmaterial zu erhalten, ist eine stark verzögerte Freisetzung des Copolymers bzw. PEK selbst aus dem CPC notwendig. In Abhängigkeit von der Konzentration wurde für PEI(25)-Mal B eine geringere Freisetzung aus dem Copolymer/CPC- und PEK/CPC ermittelt. Aufgrund der nanoskaligen Dimension der polymeren Strukturen wird die Diffusion durch das offene CPC-Porensystem erschwert. Für die PEI(5)-PGlu-346, PEI(5)-PGlu-346-Mal und die zugehörigen PEK wurde hingegen keine messbare Freisetzung aus dem CPC nachgewiesen. Die Glutaminsäureeinheiten können Calciumionen komplexieren und beeinflussen dadurch die Keimbildung und das Wachstum der CaP-Phase. Die Copolymerstrukturen werden somit in den CPC integriert und können nur durch Abbau des schwerlöslichen Zementes freigesetzt werden.
Bei den Untersuchungen der BZM-Freisetzung aus den BZM/Copolymer/CPC- und BZM/PEK/CPC-Kompositen kristallisierte sich BZM/PEI(5)-PGlu-346-Mal/CPC als effektivstes DDS heraus. Im Vergleich zum reinen BZM in CPC wurde nach 24 h nur etwa die Hälfte des Wirkstoffes aus dem Komposit freigesetzt. Weiterhin steigerte sich die Freisetzungsrate über den gesamten Zeitraum von 14 Tagen auf nur etwa 60 %. Aus dem BZM/CPC-Komposit wurden nach 14 Tagen mehr als 75 % BZM freigesetzt.
In Kooperation mit der Arbeitsgruppe von Prof. Michael Gelinsky vom Zentrum für Translationale Knochen-, Gelenk- und Weichgewebeforschung (TU Dresden) wurde keine signifikante Änderung der Druckfestigkeit des CPC durch die Integration der glutaminsäuremodifizierten Copolymere festgestellt. Weiterhin wurde in in vitro-Untersuchungen mit osteogen stimulierten humanen mesenchymalen Stammzellen (hMSC) kein entscheidender Einfluss der in dieser Arbeit hergestellten PEI(5)-PGlu-346- und PEI(5)-PGlu-346-Mal-Copolymere auf die Proliferation der Zellen beobachtet. Zudem war bei beiden Copolymeren eine osteogene Differenzierung der hMSC zu knochenbildenden Osteoblasten nachweisbar, wobei PEI(5)-PGlu-346-Mal die Entwicklung der Stammzellen zu knochenbildenden Zellen sogar zu fördern scheint.
Durch die Kombination von hochverzweigtem PEI mit Polyglutaminsäure und Maltose wurde in dieser Arbeit ein innovatives DDS für die kontrollierte und effektiv verzögerte Freisetzung von BZM aus CPC erzeugt, welches die einleitend erwähnten Anforderungen erfüllt. Das Copolymersystem weist eine hohe Biokompatibilität auf, ohne die mechanischen Eigenschaften des CPC zu verändern. Diese Arbeit hat daher einen entscheidenden Beitrag im Bereich der Wirkstofffreisetzung aus festen Materialien geliefert und bildet die Grundlage für zukünftige polymere DDS in CPC.
|
630 |
Wechselwirkung halophiler Mikroorganismen mit RadionuklidenBader, Miriam 08 May 2018 (has links)
Im Rahmen dieser Arbeit wurde die Wechselwirkung von halophilen Mikroorganismen mit Uran unter Verwendung verschiedener spektroskopischer, mikroskopischer und molekularbiologischer Methoden untersucht. Ausgewählte Vertreter halophiler Mikroorganismen waren dabei das moderat halophile Bakterium Brachybacterium sp. G1 sowie zwei extrem halophile Archaea der Gattung Halobacterium. Für das extrem halophile Archaeon H. noricense DSM15987T wurde auch die Wechselwirkung mit den trivalenten Metallionen Europium und Curium untersucht.
Es konnte festgestellt werden, dass die Bioassoziation von Uran durch das untersuchte Bakterium und die beiden Archaea in unterschiedlicher Art und Weise erfolgte. Für den niedrigeren Urankonzentrationsbereich (30 - 50 μM) konnte für das moderat halophile Bakterium der Prozess der Biosorption nachgewiesen werden, welcher nach 2 h abgeschlossen war. Mittels in situ ATR FT-IR war ausschließlich die Anbindung von Uran an Carboxylgruppen detektierbar. Die Assoziation desselben Radionuklids an die Zellen der beiden extrem halophilen Archaea erfolgte im Gegensatz dazu in einem mehrstufigen Prozess. Dieser ist bisher in der Literatur nach bestem Wissen nur einmal für ein Bakterium beschrieben. Der mehrstufige Prozess ist gekennzeichnet durch eine erste kurze Assoziationsphase von einer Stunde, gefolgt von einer Freisetzung des Urans in die umgebende Lösung. Nach dieser vierstündigen Desorptionsphase setzte ein erneuter Assoziationsprozess ein. Bei höheren Urankonzentrationen (85 - 100 μM) wurde mit zunehmender Kontaktzeit mehr Uran assoziiert, ohne dass Desorptionsprozesse erkennbar waren.
Um den mehrstufigen und konzentrationsabhängigen Assoziationsprozess von Uran an H. noricense DSM15987T auf molekularer Ebene aufzuklären, wurden Fluoreszenzmikroskopie, Elektronenmikroskopie gekoppelt mit EDX – Analyse sowie in situ ATR FT-IR, TRLFS und XAS komplementär eingesetzt und diese mikroskopischen und spektroskopischen Methoden durch die molekularbiologische Methode der Proteomik ergänzt. Mikroskopisch konnte eine Agglomeration der Zellen detektiert werden. Diese war mit zunehmender Inkubationszeit sowie bei höherer Urankonzentration stärker ausgeprägt. Mit den spektroskopischen Methoden konnte die Anbindung von Uran an carboxylische Funktionalitäten nachgewiesen werden. Zusätzlich war eine Phosphatspezies, strukturell analog dem U(VI) Mineral Meta-Autunit, nachweisbar. Die Fraktionsanalyse zeigt, dass bei niedriger Urankonzentration diese Phosphatspezies dominant ist. Demgegenüber überwiegt bei einer höheren Urankonzentration die carboxylische Spezies. Dies kann mit der verstärkten Agglomeration und der damit einhergehenden Freisetzung von EPS, wozu auch
carboxylische Funktionalitäten in Form von verschiedenen Zuckerderivaten gehören, erklärt werden.
Eine Bestätigung der Bildung eines Uran-Phosphat-Minerals erfolgte mit TEM/EDX. Die erhaltenen spektroskopischen und mikroskopischen Nachweise des Uran-Phosphat-Minerals konnten auch erstmalig mit molekularbiologischen Ergebnissen in Übereinstimmung gebracht werden. Dabei war mit Hilfe der Proteomik eine Uran-induzierte Änderung der Expression von Enzymen des Phosphatmetabolismus nachweisbar.
Zusätzlich wurde die Interaktion von H. noricense DSM15987T mit trivalenten Metallen untersucht. Dabei kam das radioaktive Element Curium und sein analoges Lanthanid Europium zum Einsatz. Es konnte festgestellt werden, dass es sich bei der Assoziation von Europium, anders als beim Uran, nicht um einen mehrstufigen Prozess handelt. Jedoch ist auch hier nicht von einer reinen Biosorption auszugehen, da die Assoziation relativ langsam erfolgt. Mit TRLFS konnten drei zellassoziierte Spezies extrahiert werden. Durch den Vergleich mit Referenzspektren fand eine Zuordnung zu einer phosphatischen und einer carboxylischen Spezies statt. Bei der Assoziation von Curium an das halophile Archaeon konnten zwei Spezies identifiziert werden, welche allerdings auf Grund der geringen Anzahl an vorhandenen Referenzspektren nicht eindeutig zugeordnet werden konnte.
Mit der vorliegenden Arbeit konnte gezeigt werden, dass die bisher in der Literatur noch nicht beschriebene Kombination von spektroskopischen, mikroskopischen und molekularbiologischen Methoden zur Aufklärung der Uraninteraktion mit Mikroorganismen
notwendig ist. So können stattfindende Prozesse zusätzlich durch eine veränderte Proteinexpression erklärt werden.
Zusammenfassend ist zu sagen, dass die Art und Weise der Wechselwirkung eines Radionuklids mit einem Mikroorganismus stark vom jeweiligen Mikroorganismus abhängt. Daher ist es zukünftig wichtig die unter Endlagerbedingungen aktiven dominanten Vertreter zu identifizieren, um daraus resultierend die bedeutenden Stoffwechselwege abzuleiten und letztendlich thermodynamische Daten für die Sicherheitsanalyse zu generieren. Das in dieser Arbeit untersuchte Bakterium wird aufgrund seiner geringen Salztoleranz, trotz seiner starken Biosorption des Urans, eher eine untergeordnete Rolle für das Migrationsverhalten der Radionuklide im Salzgestein spielen. Demgegenüber sind Halobacterium Spezies auf Grund ihrer hohen Salztoleranz und ihres ubiquitären Vorkommens in weltweiten Salzvorkommen ein dominanter Mikroorganismus in Steinsalz. Die untersuchten extrem halophilen Archaea tragen dabei zu einer Immobilisierung des Urans (z. Bsp. durch Biomineralisierung und Bioreduktion) und somit zur Rückhaltung von im Salzgestein freigesetzten Radionukliden bei. Inwiefern diese Transformationsprozesse auch für andere sechswertige Actinide wie PuO22+ und NpO22+ zutreffen, muss in weiteren Experimenten geklärt werden.
|
Page generated in 0.1154 seconds