• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 217
  • 126
  • Tagged with
  • 339
  • 339
  • 339
  • 339
  • 339
  • 42
  • 23
  • 22
  • 22
  • 21
  • 21
  • 20
  • 20
  • 19
  • 18
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
91

Computational Complexity and Delay Reduction for RLNC Single and Multi-hop Communications

Tasdemir, Elif 20 March 2023 (has links)
Today’s communication network is changing rapidly and radically. Demand for low latency, high reliability and low energy consumption increases as well the variety of characteristics of the connected devices. It is also expected that the number of connected devices will be massive in coming years. Some devices will be connected to the new generation base stations directly, while some of them will be connected through other devices via multi-hops. Reliable communication between these massive devices can be done via re-transmission, repetition of packets several times or via Forward Error Correction (FEC). In re-transmission method, when packets are negatively acknowledged or the sender’s acknowledgment timer expires, packets are re-transmitted. In repetition method, every packet can be send several times. Both aforementioned methods can cause a huge delay, particularly, in multi-hop network. On the contrary of these methods, FEC methods are preferred for low latency applications. Source information are transmitted together with redundant information. Hence, the number of transmissions are reduced comparing to the methods mentioned above. Random Linear Network Coding (RLNC) is a packet level erasure correcting codes which aims to reduce latency. Specifically, source packets are combined and these combinations or coded packets are sent to the destination. Lost packets do no need to be re-sent since another coded packet can be substituted to the lost coded packet. Hence, the feedback mechanism and re-sending process becomes unnecessary. There are many variations of RLNC. One variation is called sliding window RLNC which apples FEC mechanism. This coding scheme achieves low latency via interleaved coded packets in between source packets. Another variation of the RLNC is Fulcrum, which is a versatile code. Fulcrum provides three different decoding options. Received coded packets can be decoded with low, high or middle complexity. This is a very important feature since connected devices will have different computation capabilities and proving a versatile code will allow them flexibility. Although the aforementioned coding schemes are well suited to error prone network, there are still remaining challenges need to be studied. For instance, Fulcrum RLNC has high encoding and decoding complexity which increase the computation time and energy consumption. Moreover, although original Fulcrum RLNC strengths the reliability, it needs to be improved for low latency applications. Another remaining challenges is that recoding strategy of RLNC is not optimal for low latency. Allowing the intermediate nodes to combine received packets is referred as recoding. As described earlier, data packets will pass many hops until they reach destination. Therefore, compute-and-forward paradigm will be preferred rather than store-and-forward. Although recoding capability of RLNC differs it from other coding schemes (Raptor, LT), the conventional way of recoding is not efficient for low latency. Hence, the aim of this thesis is to address the aforementioned remaining challenges. One way to address the remaining challenges is to employ sparsity. In other words, a few source packets can be combined rather than a large set of source packets to generate coded packets. Particularly, a dynamic sparse mechanism is proposed to vary the number of combined source packets during the encoding without a signaling between sender and receiver for Fulcrum RLNC to speed up encoding and decoding process without increasing overhead amount. Then, two different sliding window schemes were integrated into Fulcrum RLNC to make Fulcrum RLNC gain the low latency property. Sending source packets systematically and then spreading sparse coded packets in between systematic source packets can be referred as systematic sparsity. Moreover, different sparse and systematic recoding strategies have been proposed in this thesis to lower the delay and computation time at the intermediate nodes and destination. Finally, one of the proposed recoding strategy has been applied to the vehicle platooning scenario to increase reliability. All proposed coding schemes were analyzed and performed on KODO which is well known network coding library.
92

Aktuelle Methoden der Background Subtraction und deren Anwendung als Vorverarbeitung einer Gestürzten-Personen-Erkennung

Brose, Jan 03 June 2022 (has links)
Das Thema dieser Arbeit ist die Entwicklung einer Background Subtraction und deren Verwendung in einer Gestürzten-Personen-Erkennung im Kontext eines Roboter Nachtwächters in einer Pflegeeinrichtung. Dazu wird der aktuelle technische Stand bei der Background Subtraction betrachtet. Im Anschluss daran wird basierend auf der Recherche und den Rahmenbedingungen die durch das Einsatzszenario gegeben sind ein Ansatz gewählt und umgesetzt. / The topic of this thesis is the development of a background subtraction and its use in a fallen person detection in the context of a robot night watchman in a care facility. For this purpose, the current technical status of background subtraction is considered. Subsequently, an approach is selected and implemented based on the research and the conditions given by the application scenario.
93

Studientexte zur Sprachkommunikation

Hoffmann, Rüdiger 01 September 2022 (has links)
No description available.
94

Surgical Instruments based on flexible micro-electronics

Rivkin, Boris 15 December 2022 (has links)
This dissertation explores strategies to create micro-scale tools with integrated electronic and mechanical functionalities. Recently developed approaches to control the shape of flexible micro-structures are employed to fabricate micro-electronic instruments that embed components for sensing and actuation, aiming to expand the toolkit of minimally invasive surgery. This thesis proposes two distinct types of devices that might expand the boundaries of modern surgical interventions and enable new bio-medical applications. First, an electronically integrated micro-catheter is developed. Electronic components for sensing and actuation are embedded into the catheter wall through an alternative fabrication paradigm that takes advantage of a self-rolling polymeric thin-film system. With a diameter of only 0.1 mm, the catheter is capable of delivering fluids in a highly targeted fashion, comprises actuated opposing digits for the efficient manipulation of microscopic objects, and a magnetic sensor for navigation. Employing a specially conceived approach for position tracking, navigation with a high resolution below 0.1 mm is achieved. The fundamental functionalities and mechanical properties of this instrument are evaluated in artificial model environments and ex vivo tissues. The second development explores reshapeable micro-electronic devices. These systems integrate conductive polymer actuators and strain or magnetic sensors to adjust their shape through feedback-driven closed loop control and mechanically interact with their environment. Due to their inherent flexibility and integrated sensory capabilities, these devices are well suited to interface with and manipulate sensitive biological tissues, as demonstrated with an ex vivo nerve bundle, and may facilitate new interventions in neural surgery.:List of Abbreviations 1 Introduction 1.1 Motivation 1.2 Objectives and structure of this dissertation 2 Background 2.1 Tools for minimally invasive surgery 2.1.1 Catheters 2.1.2 Tools for robotic micro-surgery 2.1.3 Flexible electronics for smart surgical tools 2.2 Platforms for shapeable electronics 2.2.1 Shapeable polymer composites 2.2.2 Shapeable electronics 2.2.3 Soft actuators and manipulators 2.3 Sensors for position and shape feedback 2.3.1 Magnetic sensors for position and orientation measurements 2.3.2 Strain gauge sensors 3 Materials and Methods 3.1 Materials for shapeable electronics 3.1.1 Metal-organic sacrificial layer 3.1.2 Polyimide as reinforcing material 3.1.3 Swelling hydrogel for self assembly 3.1.4 Polypyrrole for flexible micro actuators 3.2 Device fabrication techniques 3.2.1 Photolithography 3.2.2 Electron beam deposition 3.2.3 Sputter deposition 3.2.4 Atomic layer deposition 3.2.5 Electro-polymerization of polypyrrole 3.3 Device characterization techniques 3.3.1 Kerr magnetometry 3.3.2 Electro-magnetic characterization of sensors 3.3.3 Electro-chemical analysis of polypyrrole 3.3.4 Preparation of model environments and materials 3.4 Sensor signal evaluation and processing 3.4.1 Signal processing 3.4.2 Cross correlation for phase analysis 3.4.3 PID feedback control 4 Electronically Integrated Self Assembled Micro Catheters 4.1 Design and Fabrication 4.1.1 Fabrication and self assembly 4.1.2 Features and design considerations 4.1.3 Electronic and fluidic connections 4.2 Integrated features and functionalities 4.2.1 Fluidic transport 4.2.2 Bending stability 4.2.3 Actuated micro manipulator 4.3 Magnetic position tracking 4.3.1 Integrated magnetic sensor 4.3.2 Position control with sensor feedback 4.3.3 Introduction of magnetic phase encoded tracking 4.3.4 Experimental realization 4.3.5 Simultaneous magnetic and ultrasound tracking 4.3.6 Discussion, limitations, and perspectives 5 Reshapeable Micro Electronic Devices 5.1 Design and fabrication 5.1.1 Estimation of optimal fabrication parameters 5.1.2 Device Fabrication 5.1.3 Control electronics and software 5.2 Performance of Actuators 5.2.1 Blocking force, speed, and durability 5.2.2 Curvature 5.3 Orientation control with magnetic sensors 5.3.1 Magnetic sensors on actuated device 5.3.2 Reference magnetic field 5.3.3 Feedback control 5.4 Shape control with integrated strain sensors 5.4.1 Strain gauge curvature sensors 5.4.2 Feedback control 5.4.3 Obstacle detection 5.5 Heterogenous integration with active electronics 5.5.1 Fabrication and properties of active matrices 5.5.2 Fabrication and operation of PPy actuators 5.5.3 Site selective actuation 6 Discussion and Outlook 6.1 Integrated self assembled catheters 6.1.1 Outlook 6.2 Reshapeable micro electronic devices 6.2.1 Outlook 7 Conclusion Appendix A1 Processing parameters for polymer stack layers A2 Derivation of magnetic phase profile in 3D Bibliography List of Figures and Tables Acknowledgements Theses List of Publications
95

A Contribution to the Design of Highly Redundant Compliant Aerial Manipulation Systems

Yao, Chao 05 October 2022 (has links)
Es ist vorhersehbar, dass die Luftmanipulatoren in den nächsten Jahrzehnten für viele Aufgaben eingesetzt werden, die entweder zu gefährlich oder zu teuer sind, um sie mit herkömmlichen Methoden zu bewältigen. In dieser Arbeit wird eine neuartige Lösung für die Gesamtsteuerung von hochredundanten Luftmanipulationssystemen vorgestellt. Die Ergebnisse werden auf eine Referenzkonfiguration angewendet, die als universelle Plattform für die Durchführung verschiedener Luftmanipulationsaufgaben etabliert wird. Diese Plattform besteht aus einer omnidirektionalen Drohne und einem seriellen Manipulator. Um den modularen Regelungsentwurf zu gewährleisten, werden zwei rechnerisch effiziente Algorithmen untersucht, um den virtuellen Eingang den Aktuatorbefehlen zuzuordnen. Durch die Integration eines auf einem künstlichen neuronalen Netz basierenden Diagnosemoduls und der rekonfigurierbaren Steuerungszuordnung in den Regelkreis, wird die Fehlertoleranz für die Drohne erzielt. Außerdem wird die Motorsättigung durch Rekonfiguration der Geschwindigkeits- und Beschleunigungsprofile behandelt. Für die Beobachtung der externen Kräfte und Drehmomente werden zwei Filter vorgestellt. Dies ist notwendig, um ein nachgiebiges Verhalten des Endeffektors durch die achsenselektive Impedanzregelung zu erreichen. Unter Ausnutzung der Redundanz des vorgestellten Luftmanipulators wird ein Regler entworfen, der nicht nur die Referenz der Endeffektor-Bewegung verfolgt, sondern auch priorisierte sekundäre Aufgaben ausführt. Die Wirksamkeit der vorgestellten Lösungen wird durch umfangreiche Tests überprüft, und das vorgestellte Steuerungssystem wird als sehr vielseitig und effektiv bewertet.:1 Introduction 2 Fundamentals 3 System Design and Modeling 4 Reconfigurable Control Allocation 5 Fault Diagnostics For Free Flight 6 Force and Torque Observer 7 Trajectory Generation 8 Hybrid Task Priority Control 9 System Integration and Performance Evaluation 10 Conclusion / In the following decades, aerial manipulators are expected to be deployed in scenarios that are either too dangerous for human beings or too expensive to be accomplished by traditional methods. This thesis presents a novel solution for the overall control of highly redundant aerial manipulation systems. The results are applied to a reference configuration established as a universal platform for performing various aerial manipulation tasks. The platform consists of an omnidirectional multirotor UAV and a serial manipulator. To ensure modular control design, two computationally efficient algorithms are studied to allocate the virtual input to actuator commands. Fault tolerance of the aerial vehicle is achieved by integrating a diagnostic module based on an artificial neural network and the reconfigurable control allocation into the control loop. Besides, the risk of input saturation of individual rotors is minimized by predicting and reconfiguring the speed and acceleration responses. Two filter-based observers are presented to provide the knowledge of external forces and torques, which is necessary to achieve compliant behavior of the end-effector through an axis-selective impedance control in the outer loop. Exploiting the redundancy of the proposed aerial manipulator, the author has designed a control law to achieve the desired end-effector motion and execute secondary tasks in order of priority. The effectiveness of the proposed designs is verified with extensive tests generated by following Monte Carlo method, and the presented control scheme is proved to be versatile and effective.:1 Introduction 2 Fundamentals 3 System Design and Modeling 4 Reconfigurable Control Allocation 5 Fault Diagnostics For Free Flight 6 Force and Torque Observer 7 Trajectory Generation 8 Hybrid Task Priority Control 9 System Integration and Performance Evaluation 10 Conclusion
96

Fabrication and Characterization of AlGaN/GaN Metal-Insulator-Semiconductor High Electron Mobility Transistors for High Power Applications

Calzolaro, Anthony 11 October 2022 (has links)
AlGaN/GaN metal–insulator–semiconductor high electron mobility transistors (MIS-HEMTs) are promising candidates for next generation high-efficiency and high-voltage power applications. The excellent physical properties of GaN-based materials, featuring high critical electric field and large carrier saturation velocity, combined to the high carrier density and large mobility of the two-dimensional electron gas confined at the AlGaN/GaN interface, enable higher power density minimizing power losses and self-heating of the device. However, the advent of the GaN-based MIS-HEMT to the industrial production is still hindered by technological challenges that are being faced in parallel. Among them, one of the biggest challenge is represented by the insertion of a gate dielectric in MIS-HEMTs compared to Schottky-gate HEMTs, which causes operational instability due to the presence of high-density trap states located at the dielectric/III-nitride interface or within the dielectric. The development of a gold-free ohmic contact technology is another important concern since the high-volume and cost-effective production of GaN-based transistors also depends on the cooperative manufacturing of GaN-based devices in Si production facilities, where gold represents an undesidered source of contamination. In fact, even though over the past years there have been multiple attemps to develop gold-free ohmic contacts, there is still no full understanding of the contact formation and current transport mechanism. The first objective of this work was the investigation of a gold-free and low-resistive ohmic contact technology to AlGaN/GaN based on sputtered Ta/Al-based metal stacks annealed at low temperatures. A low contact resistance below 1 Ω mm was obtained using Ta/Al-based metal stacks annealed at temperatures below 600 °C. The ohmic behavior and the contact properties of contact resistance, optimum annealing temperature and thermal stability of Ta/Al-based contacts were studied. The nature of the current transport was also investigated indicating a contact mechanism governed by thermionic field emission tunneling through the AlGaN barrier. Finally, gold-free Ta/Al-based ohmic contacts were integrated in MIS-HEMTs fabricated on a 150 mm GaN-on- Si substrate, demonstrating to be a promising contact technology for AlGaN/GaN devices and revealing to be beneficial for devices operating at high temperatures. The optimization of the MIS-gate structure in terms of trap states at the dielectric/III-nitride interface and inside the dielectric in MIS-HEMTs using atomic layer deposited (ALD) Al2O3 as gate insulator was the second focus of this work. First, the MIS-gate structure was improved by an O2 plasma surface preconditioning applied before the Al2O3 deposition and by an N2 postmetallization anneal applied after gate metallization, which significantly reduced trap states at the Al2O3/GaN interface and within the dielectric. Afterwards, the effectiveness of these treatments was demonstrated in Al2O3-AlGaN/GaN MIS-HEMTs by pulsed current–voltage measurements revealing improved threshold voltage stability. Lastly, it was shown that also the lower annealing temperatures used for the formation of Ta/Al-based ohmic contacts, processed before gate dielectric deposition, are beneficial in terms of trap states at the ALD-Al2O3/GaN interface, representing a new aspect to be considered when using an ohmic first fabrication approach.
97

Optimization of niobium oxide-based threshold switches for oscillator-based applications

Herzig, Melanie 11 December 2023 (has links)
In niobium oxide-based capacitors non-linear switching characteristics can be observed if the oxide properties are adjusted accordingly. Such non-linear threshold switching characteristics can be utilized in various non-linear circuit applications, which have the potential to pave the way for the application of new computing paradigms. Furthermore, the non-linearity also makes them an interesting candidate for the application as selector devices e.g. for non-volatile memory devices. To satisfy the requirements for those two areas of application, the threshold switching characteristics need to be adjusted to either obtain a maximized voltage extension of the negative differential resistance region in the quasi-static I-V characteristics, which enhances the non-linearity of the devices and results in improved robustness to device-to-device variability or to adapt the threshold voltage to a specific non-volatile memory cell. Those adaptations of the threshold switching characteristics were successfully achieved by deliberate modifications of the niobium oxide stack. Furthermore, the impact of the material stack on the dynamic behavior of the threshold switches in non-linear circuits as well as the impact of the electroforming routine on the threshold switching characteristics were analyzed. The optimized device stack was transferred from the micrometer-sized test structures to submicrometer-sized devices, which were packaged to enable easy integration in complex circuits. Based on those packaged threshold switching devices the behavior of single as well as of coupled relaxation oscillators was analyzed. Subsequently, the obtained results in combination with the measurement results for the statistic device-to-device variability were used as a basis to simulate the pattern formation in coupled relaxation oscillator networks as well as their performance in solving graph coloring problems. Furthermore, strategies to adapt the threshold voltage to the switching characteristics of a tantalum oxide-based non-volatile resistive switch and a non-volatile phase change cell, to enable their application as selector devices for the respective cells, were discussed.:Abstract I Zusammenfassung II List of Abbrevations VI List of Symbols VII 1 Motivation 1 2 Basics 5 2.1 Negative differential resistance and local activity in memristor devices 5 2.2 Threshold switches as selector devices 8 2.3 Switching effects observed in NbOx 13 2.3.1 Threshold switching caused by metal-insulator transition 13 2.3.2 Threshold switching caused by Frenkel-Poole conduction 18 2.3.3 Non-volatile resistive switching 32 3 Sample preparation 35 3.1 Deposition techniques 35 3.1.1 Evaporation 35 3.1.2 Sputtering 36 3.2 Micrometer-sized devices 36 3.3 Submicrometer-sized devices 37 3.3.1 Process flow 37 3.3.2 Reduction of the electrode resistance 39 3.3.3 Transfer from structuring via electron beam lithography to structuring via laser lithography 48 3.3.4 Packaging procedure 50 4 Investigation and optimization of the electrical device characteristic 51 4.1 Introduction 51 4.2 Measurement setup 52 4.3 Electroforming 53 4.3.1 Optimization of the electroforming process 53 4.3.2 Characterization of the formed filament 62 4.4 Dynamic device characteristics 67 4.4.1 Emergence and measurement of dynamic behavior 67 4.4.2 Impact of the dynamic device characteristics on quasi-static I-V characteristics 70 5 Optimization of the material stack 81 5.1 Introduction 81 5.2 Adjustment of the oxygen content in the bottom layer 82 5.3 Influence of the thickness of the oxygen-rich niobium oxide layer 92 5.4 Multilayer stacks 96 5.5 Device-to-device and Sample-to-sample variability 110 6 Applications of NbOx-based threshold switching devices 117 6.1 Introduction 117 6.2 Non-linear circuits 117 6.2.1 Coupled relaxation oscillators 117 6.2.2 Memristor Cellular Neural Network 121 6.2.3 Graph Coloring 127 6.3 Selector devices 132 7 Summary and Outlook 138 8 References 141 9 List of publications 154 10 Appendix 155 10.1 Parameter used for the LT Spice simulation of I-V curves for threshold switches with varying oxide thicknesses 155 10.2 Dependence of the oscillation frequency of the relaxation oscillator circuit on the capacitance and the applied source voltage 156 10.3 Calculation of the oscillation frequency of the relaxation oscillator circuit 157 10.4 Characteristics of the memristors and the cells utilized in the simulation of the memristor cellular neural network 164 10.5 Calculation of the impedance of the cell in the memristor cellular network 166 10.6 Example graphs from the 2nd DIMACS series 179 11 List of Figures 182 12 List of Tables 194
98

On Age-of-Information Aware Resource Allocation for Industrial Control-Communication-Codesign

Scheuvens, Lucas 23 January 2023 (has links)
Unter dem Überbegriff Industrie 4.0 wird in der industriellen Fertigung die zunehmende Digitalisierung und Vernetzung von industriellen Maschinen und Prozessen zusammengefasst. Die drahtlose, hoch-zuverlässige, niedrig-latente Kommunikation (engl. ultra-reliable low-latency communication, URLLC) – als Bestandteil von 5G gewährleistet höchste Dienstgüten, die mit industriellen drahtgebundenen Technologien vergleichbar sind und wird deshalb als Wegbereiter von Industrie 4.0 gesehen. Entgegen diesem Trend haben eine Reihe von Arbeiten im Forschungsbereich der vernetzten Regelungssysteme (engl. networked control systems, NCS) gezeigt, dass die hohen Dienstgüten von URLLC nicht notwendigerweise erforderlich sind, um eine hohe Regelgüte zu erzielen. Das Co-Design von Kommunikation und Regelung ermöglicht eine gemeinsame Optimierung von Regelgüte und Netzwerkparametern durch die Aufweichung der Grenze zwischen Netzwerk- und Applikationsschicht. Durch diese Verschränkung wird jedoch eine fundamentale (gemeinsame) Neuentwicklung von Regelungssystemen und Kommunikationsnetzen nötig, was ein Hindernis für die Verbreitung dieses Ansatzes darstellt. Stattdessen bedient sich diese Dissertation einem Co-Design-Ansatz, der beide Domänen weiterhin eindeutig voneinander abgrenzt, aber das Informationsalter (engl. age of information, AoI) als bedeutenden Schnittstellenparameter ausnutzt. Diese Dissertation trägt dazu bei, die Echtzeitanwendungszuverlässigkeit als Folge der Überschreitung eines vorgegebenen Informationsalterschwellenwerts zu quantifizieren und fokussiert sich dabei auf den Paketverlust als Ursache. Anhand der Beispielanwendung eines fahrerlosen Transportsystems wird gezeigt, dass die zeitlich negative Korrelation von Paketfehlern, die in heutigen Systemen keine Rolle spielt, für Echtzeitanwendungen äußerst vorteilhaft ist. Mit der Annahme von schnellem Schwund als dominanter Fehlerursache auf der Luftschnittstelle werden durch zeitdiskrete Markovmodelle, die für die zwei Netzwerkarchitekturen Single-Hop und Dual-Hop präsentiert werden, Kommunikationsfehlerfolgen auf einen Applikationsfehler abgebildet. Diese Modellierung ermöglicht die analytische Ableitung von anwendungsbezogenen Zuverlässigkeitsmetriken wie die durschnittliche Dauer bis zu einem Fehler (engl. mean time to failure). Für Single-Hop-Netze wird das neuartige Ressourcenallokationsschema State-Aware Resource Allocation (SARA) entwickelt, das auf dem Informationsalter beruht und die Anwendungszuverlässigkeit im Vergleich zu statischer Multi-Konnektivität um Größenordnungen erhöht, während der Ressourcenverbrauch im Bereich von konventioneller Einzelkonnektivität bleibt. Diese Zuverlässigkeit kann auch innerhalb eines Systems von Regelanwendungen, in welchem mehrere Agenten um eine begrenzte Anzahl Ressourcen konkurrieren, statistisch garantiert werden, wenn die Anzahl der verfügbaren Ressourcen pro Agent um ca. 10 % erhöht werden. Für das Dual-Hop Szenario wird darüberhinaus ein Optimierungsverfahren vorgestellt, das eine benutzerdefinierte Kostenfunktion minimiert, die niedrige Anwendungszuverlässigkeit, hohes Informationsalter und hohen durchschnittlichen Ressourcenverbrauch bestraft und so das benutzerdefinierte optimale SARA-Schema ableitet. Diese Optimierung kann offline durchgeführt und als Look-Up-Table in der unteren Medienzugriffsschicht zukünftiger industrieller Drahtlosnetze implementiert werden.:1. Introduction 1 1.1. The Need for an Industrial Solution . . . . . . . . . . . . . . . . . . . 3 1.2. Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2. Related Work 7 2.1. Communications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.2. Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.3. Codesign . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.3.1. The Need for Abstraction – Age of Information . . . . . . . . 11 2.4. Dependability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.5. Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 3. Deriving Proper Communications Requirements 17 3.1. Fundamentals of Control Theory . . . . . . . . . . . . . . . . . . . . 18 3.1.1. Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 3.1.2. Performance Requirements . . . . . . . . . . . . . . . . . . . 21 3.1.3. Packet Losses and Delay . . . . . . . . . . . . . . . . . . . . . 22 3.2. Joint Design of Control Loop with Packet Losses . . . . . . . . . . . . 23 3.2.1. Method 1: Reduced Sampling . . . . . . . . . . . . . . . . . . 23 3.2.2. Method 2: Markov Jump Linear System . . . . . . . . . . . . . 25 3.2.3. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 3.3. Focus Application: The AGV Use Case . . . . . . . . . . . . . . . . . . 31 3.3.1. Control Loop Model . . . . . . . . . . . . . . . . . . . . . . . 31 3.3.2. Control Performance Requirements . . . . . . . . . . . . . . . 33 3.3.3. Joint Modeling: Applying Reduced Sampling . . . . . . . . . . 34 3.3.4. Joint Modeling: Applying MJLS . . . . . . . . . . . . . . . . . 34 3.4. Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 4. Modeling Control-Communication Failures 43 4.1. Communication Assumptions . . . . . . . . . . . . . . . . . . . . . . 43 4.1.1. Small-Scale Fading as a Cause of Failure . . . . . . . . . . . . 44 4.1.2. Connectivity Models . . . . . . . . . . . . . . . . . . . . . . . 46 4.2. Failure Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 4.2.1. Single-hop network . . . . . . . . . . . . . . . . . . . . . . . . 49 4.2.2. Dual-hop network . . . . . . . . . . . . . . . . . . . . . . . . 51 4.3. Performance Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 4.3.1. Mean Time to Failure . . . . . . . . . . . . . . . . . . . . . . . 54 4.3.2. Packet Loss Ratio . . . . . . . . . . . . . . . . . . . . . . . . . 55 4.3.3. Average Number of Assigned Channels . . . . . . . . . . . . . 57 4.3.4. Age of Information . . . . . . . . . . . . . . . . . . . . . . . . 57 4.4. Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 5. Single Hop – Single Agent 61 5.1. State-Aware Resource Allocation . . . . . . . . . . . . . . . . . . . . 61 5.2. Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 5.3. Erroneous Acknowledgments . . . . . . . . . . . . . . . . . . . . . . 67 5.4. Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 6. Single Hop – Multiple Agents 71 6.1. Failure Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 6.1.1. Admission Control . . . . . . . . . . . . . . . . . . . . . . . . 72 6.1.2. Transition Probabilities . . . . . . . . . . . . . . . . . . . . . . 73 6.1.3. Computational Complexity . . . . . . . . . . . . . . . . . . . 74 6.1.4. Performance Metrics . . . . . . . . . . . . . . . . . . . . . . . 75 6.2. Illustration Scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 6.3. Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 6.3.1. Verification through System-Level Simulation . . . . . . . . . 78 6.3.2. Applicability on the System Level . . . . . . . . . . . . . . . . 79 6.3.3. Comparison of Admission Control Schemes . . . . . . . . . . 80 6.3.4. Impact of the Packet Loss Tolerance . . . . . . . . . . . . . . . 82 6.3.5. Impact of the Number of Agents . . . . . . . . . . . . . . . . . 84 6.3.6. Age of Information . . . . . . . . . . . . . . . . . . . . . . . . 84 6.3.7. Channel Saturation Ratio . . . . . . . . . . . . . . . . . . . . 86 6.3.8. Enforcing Full Channel Saturation . . . . . . . . . . . . . . . 86 6.4. Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 7. Dual Hop – Single Agent 91 7.1. State-Aware Resource Allocation . . . . . . . . . . . . . . . . . . . . 91 7.2. Optimization Targets . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 7.3. Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 7.3.1. Extensive Simulation . . . . . . . . . . . . . . . . . . . . . . . 96 7.3.2. Non-Integer-Constrained Optimization . . . . . . . . . . . . . 98 7.4. Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 8. Conclusions and Outlook 105 8.1. Key Results and Conclusions . . . . . . . . . . . . . . . . . . . . . . . 105 8.2. Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 A. DC Motor Model 111 Bibliography 113 Publications of the Author 127 List of Figures 129 List of Tables 131 List of Operators and Constants 133 List of Symbols 135 List of Acronyms 137 Curriculum Vitae 139 / In industrial manufacturing, Industry 4.0 refers to the ongoing convergence of the real and virtual worlds, enabled through intelligently interconnecting industrial machines and processes through information and communications technology. Ultrareliable low-latency communication (URLLC) is widely regarded as the enabling technology for Industry 4.0 due to its ability to fulfill highest quality-of-service (QoS) comparable to those of industrial wireline connections. In contrast to this trend, a range of works in the research domain of networked control systems have shown that URLLC’s supreme QoS is not necessarily required to achieve high quality-ofcontrol; the co-design of control and communication enables to jointly optimize and balance both quality-of-control parameters and network parameters through blurring the boundary between application and network layer. However, through the tight interlacing, this approach requires a fundamental (joint) redesign of both control systems and communication networks and may therefore not lead to short-term widespread adoption. Therefore, this thesis instead embraces a novel co-design approach which keeps both domains distinct but leverages the combination of control and communications by yet exploiting the age of information (AoI) as a valuable interface metric. This thesis contributes to quantifying application dependability as a consequence of exceeding a given peak AoI with the particular focus on packet losses. The beneficial influence of negative temporal packet loss correlation on control performance is demonstrated by means of the automated guided vehicle use case. Assuming small-scale fading as the dominant cause of communication failure, a series of communication failures are mapped to an application failure through discrete-time Markov models for single-hop (e.g, only uplink or downlink) and dual-hop (e.g., subsequent uplink and downlink) architectures. This enables the derivation of application-related dependability metrics such as the mean time to failure in closed form. For single-hop networks, an AoI-aware resource allocation strategy termed state-aware resource allocation (SARA) is proposed that increases the application reliability by orders of magnitude compared to static multi-connectivity while keeping the resource consumption in the range of best-effort single-connectivity. This dependability can also be statistically guaranteed on a system level – where multiple agents compete for a limited number of resources – if the provided amount of resources per agent is increased by approximately 10 %. For the dual-hop scenario, an AoI-aware resource allocation optimization is developed that minimizes a user-defined penalty function that punishes low application reliability, high AoI, and high average resource consumption. This optimization may be carried out offline and each resulting optimal SARA scheme may be implemented as a look-up table in the lower medium access control layer of future wireless industrial networks.:1. Introduction 1 1.1. The Need for an Industrial Solution . . . . . . . . . . . . . . . . . . . 3 1.2. Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2. Related Work 7 2.1. Communications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.2. Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.3. Codesign . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.3.1. The Need for Abstraction – Age of Information . . . . . . . . 11 2.4. Dependability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.5. Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 3. Deriving Proper Communications Requirements 17 3.1. Fundamentals of Control Theory . . . . . . . . . . . . . . . . . . . . 18 3.1.1. Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 3.1.2. Performance Requirements . . . . . . . . . . . . . . . . . . . 21 3.1.3. Packet Losses and Delay . . . . . . . . . . . . . . . . . . . . . 22 3.2. Joint Design of Control Loop with Packet Losses . . . . . . . . . . . . 23 3.2.1. Method 1: Reduced Sampling . . . . . . . . . . . . . . . . . . 23 3.2.2. Method 2: Markov Jump Linear System . . . . . . . . . . . . . 25 3.2.3. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 3.3. Focus Application: The AGV Use Case . . . . . . . . . . . . . . . . . . 31 3.3.1. Control Loop Model . . . . . . . . . . . . . . . . . . . . . . . 31 3.3.2. Control Performance Requirements . . . . . . . . . . . . . . . 33 3.3.3. Joint Modeling: Applying Reduced Sampling . . . . . . . . . . 34 3.3.4. Joint Modeling: Applying MJLS . . . . . . . . . . . . . . . . . 34 3.4. Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 4. Modeling Control-Communication Failures 43 4.1. Communication Assumptions . . . . . . . . . . . . . . . . . . . . . . 43 4.1.1. Small-Scale Fading as a Cause of Failure . . . . . . . . . . . . 44 4.1.2. Connectivity Models . . . . . . . . . . . . . . . . . . . . . . . 46 4.2. Failure Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 4.2.1. Single-hop network . . . . . . . . . . . . . . . . . . . . . . . . 49 4.2.2. Dual-hop network . . . . . . . . . . . . . . . . . . . . . . . . 51 4.3. Performance Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 4.3.1. Mean Time to Failure . . . . . . . . . . . . . . . . . . . . . . . 54 4.3.2. Packet Loss Ratio . . . . . . . . . . . . . . . . . . . . . . . . . 55 4.3.3. Average Number of Assigned Channels . . . . . . . . . . . . . 57 4.3.4. Age of Information . . . . . . . . . . . . . . . . . . . . . . . . 57 4.4. Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 5. Single Hop – Single Agent 61 5.1. State-Aware Resource Allocation . . . . . . . . . . . . . . . . . . . . 61 5.2. Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 5.3. Erroneous Acknowledgments . . . . . . . . . . . . . . . . . . . . . . 67 5.4. Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 6. Single Hop – Multiple Agents 71 6.1. Failure Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 6.1.1. Admission Control . . . . . . . . . . . . . . . . . . . . . . . . 72 6.1.2. Transition Probabilities . . . . . . . . . . . . . . . . . . . . . . 73 6.1.3. Computational Complexity . . . . . . . . . . . . . . . . . . . 74 6.1.4. Performance Metrics . . . . . . . . . . . . . . . . . . . . . . . 75 6.2. Illustration Scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 6.3. Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 6.3.1. Verification through System-Level Simulation . . . . . . . . . 78 6.3.2. Applicability on the System Level . . . . . . . . . . . . . . . . 79 6.3.3. Comparison of Admission Control Schemes . . . . . . . . . . 80 6.3.4. Impact of the Packet Loss Tolerance . . . . . . . . . . . . . . . 82 6.3.5. Impact of the Number of Agents . . . . . . . . . . . . . . . . . 84 6.3.6. Age of Information . . . . . . . . . . . . . . . . . . . . . . . . 84 6.3.7. Channel Saturation Ratio . . . . . . . . . . . . . . . . . . . . 86 6.3.8. Enforcing Full Channel Saturation . . . . . . . . . . . . . . . 86 6.4. Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 7. Dual Hop – Single Agent 91 7.1. State-Aware Resource Allocation . . . . . . . . . . . . . . . . . . . . 91 7.2. Optimization Targets . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 7.3. Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 7.3.1. Extensive Simulation . . . . . . . . . . . . . . . . . . . . . . . 96 7.3.2. Non-Integer-Constrained Optimization . . . . . . . . . . . . . 98 7.4. Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 8. Conclusions and Outlook 105 8.1. Key Results and Conclusions . . . . . . . . . . . . . . . . . . . . . . . 105 8.2. Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 A. DC Motor Model 111 Bibliography 113 Publications of the Author 127 List of Figures 129 List of Tables 131 List of Operators and Constants 133 List of Symbols 135 List of Acronyms 137 Curriculum Vitae 139
99

Investigation of thermomechanical fatigue processes in power electronic packages with experiment and simulation

Schwabe, Christian 30 June 2023 (has links)
This work deals with the power cycling reliably of power modules and discrete devices. A small part was tested with standard test equipment, but the majority of devices were tested with an advanced test approach with additional switching losses. A large variety of packages under different conditions were tested: Discrete low-voltage silicon MOSFETs (<100 V), discrete SiC MOSFETs, baseplate-free SiC modules, medium power silicon modules and high power silicon modules. The core of the work is the investigation of low temperature swings in the transition between elastic and plastic deformation. During high operation temperatures, no significant increase in lifetime was observed, but at reduced junction temperatures, the impact was significant. All experimental results were transferred into a 3D simulation environment, for further investigation of the temperature and current distribution as well as the mechanical fatigue parameters, to allow a better understanding of the physical processes.
100

Kombination Resistiver und Ferroelektrischer Schaltmechanismen in HfO2-basierten Bauelementen

Max, Benjamin 16 June 2021 (has links)
In den kommenden Jahren ist eine deutliche Erhöhung des digitalen Speicherbedarfs zu erwarten, was neue Anforderungen an künftige Speichertechnologien und –architekturen bringt. Hafniumoxid ist aktuell das Standard-Gatedielektrikum für Transistoren in der Halbleitertechnologie und wird in resistiven und ferroelektrischen Speichern eingesetzt, die für kommende Speichergenerationen geeignet sind. In dieser Arbeit wird die Kombination aus resistiven und ferroelektrischen Speichermechanismen untersucht. Zunächst konnte gezeigt werden, dass sich beide Schaltvorgänge in einer Zelle realisieren lassen. Dazu wurde eine polykristalline, ferroelektrische Hafniumoxidschicht in eine Kondensatorstruktur mit unterschiedlichen Elektroden gebracht. Der reversible resistive und ferroelektrische Schaltvorgang beruht auf einer Zurücksetz-Operation in einen sehr hochohmigen Zustand, wodurch die Oxidschicht für weiteres ferroelektrisches Schalten genutzt werden konnte. Zusätzlich wurde der Einfluss von Sauerstofffehlstellen auf die resistiven Formier- und Schreibspannungen nachgewiesen. Im zweiten Teil dieser Arbeit wurden ferroelektrische Tunnelkontakte (engl. FTJ) hergestellt und systematisch auf ihre Schalt- und Speichereigenschaften untersucht. Diese beruhen auf der Informationsspeicherung in der ferroelektrischen Hafniumzirkoniumoxid-Schicht (HZO) und auf einem resistiven Auslesemechanismus, bei dem der Tunnelstrom für den jeweiligen Polarisationszustand gemessen wird. Dieser Lesevorgang ist nichtdestruktiv. Für den quantenmechanischen Tunnelvorgang sind dünne Oxidschicht notwendig, um einen ausreichend hohen Tunnelstrom zu erreichen. HZO-basierte Schichten verlieren ihre ferroelektrischen Eigenschaften unter einer kritischen Schichtdicke, die für einen klassischen Metall-Ferroelektrikum-Metall-Tunnelkontakt zu hoch ist. Dazu wurde in dieser Arbeit der Ansatz gewählt, zusätzlich eine dielektrische Aluminiumoxid-Tunnelbarriere in die Struktur einzubringen. Dadurch können die ferroelektrische und dielektrische Schicht unabhängig voneinander optimiert werden (2-lagiger ferroelektrischer Tunnelkontakt). Es konnte gezeigt werden, dass nur in einem bestimmten Dielektrikums-Schichtdickenbereich zwischen etwa 2-2,5nm das gewünschte Tunnelverhalten der Struktur hervortritt. Beim Setzen der jeweiligen Polarisationszustände tritt in der Schaltkinetik der bekannte Zeit-Amplituden-Kompromiss auf. Dieser wurde mithilfe des nukleationslimierten Schaltmodells untersucht. Über eine geeignete Wahl von Pulsdauer und –amplitude können durch Teilpolarisation Zwischenzustände gespeichert werden. Die Zyklenfestigkeit zeigt ein stärkeres Aufwachverhalten als die reine HZO-Schicht. Es konnte gezeigt werden, dass der Auslesetunnelstroms direkt mit dem Anstieg der remanenten Polarisation korreliert und somit das Speicherfenster mit einem An/Aus-Verhältnis von 10 erst nach etwa 10^2 Schaltzyklen vollständig geöffnet ist. Die Datenhaltung zeigte nur ein marginales Speicherfenster bei Extrapolation auf 10 Jahre. Die Datenhaltung konnte durch Abscheidung von Titannitrid- und Platin-Metallelektroden mit unterschiedlichen Austrittsarbeiten stabilisiert werden. Damit ließ sich das Speicherfenster deutlich erhöhen. Die Möglichkeit, Zwischenzustände speichern und graduell einzustellen zu können, erlaubt die Nutzung der zweilagigen FTJs als künstliche Synapsen. Dazu wurde über verschiedene Pulsfolgen der veränderliche Tunnelwiderstand als synaptisches Gewicht interpretiert. Damit konnte Potenzierung- und Depressionsverhalten der künstlichen Synapse emuliert werden.:Danksagung I Kurzzusammenfassung II Abstract III Symbolverzeichnis VI Abkürzungsverzeichnis IX 1 Einführung und Motivation 1 2 Grundlagen 4 2.1 Dielektrizität und Ferroelektrizität 4 2.2 Ferroelektrizität in HfO2 9 2.3 Arten ferroelektrischer Speicher 13 2.3.1 Ferroelektrischer Kondensator 13 2.3.2 Ferroelektrischer Feldeffekttransistor 15 2.3.3 Ferroelektrischer Tunnelkontakt 16 2.4 Überblick über resistive Speicher 24 3 Experimentelle Methoden 28 3.1 Physikalische Charakterisierung 28 3.1.1 Röntgendiffraktometrie unter streifendem Einfall 28 3.1.2 Röntgenreflektometrie 28 3.1.3 Transmissionselektronenmikroskopie 29 3.2 Elektrische Untersuchungsmethoden 29 3.2.1 Elektrische Messung resistiver Schaltkurven 29 3.2.2 Dynamische Hysteresekurven und Messung der Zyklenfestigkeit 29 3.2.3 Elektrische Messung der ferroelektrischen Tunnelkontakte 30 3.3 Abscheideverfahren zur Herstellung der Kondensatorstrukturen 31 3.3.1 Reaktives Magnetronsputtern 32 3.3.2 Elektronenstrahlverdampfung und Thermisches Verdampfen 32 3.3.3 Atomlagenabscheidung 33 4 Resistives und ferroelektrisches Schalten in einer Zelle 34 4.1 Resistives Schalten in amorphem und kristallinem HfO2 34 4.2 Kombination von resistivem und ferroelektrischem Schalten in einer Struktur 38 5 Ferroelektrische Tunnelkontakte 46 5.1 Charakterisierung der ferroelektrischen Hafniumzirkoniumoxid-Schicht 46 5.2 Übersicht und Aufbau der untersuchten Proben 50 5.3 (Ferro-)Elektrische Eigenschaften und Schichtdickenoptimierung der FE/DE-FTJs 53 5.3.1 Einfluss der Al2O3-Schichtdicke 60 5.3.2 Skalierbarkeit 64 5.4 Schaltkinetik 67 5.5 Zyklenfestigkeit 78 5.6 Datenhaltung 87 5.6.1 Einfluss von Depolarisationsfeldern in zweilagigen FTJs 87 5.6.2 Optimierung durch Elektroden mit unterschiedlichen Austrittsarbeiten 93 5.7 Anwendung von FTJs als künstliche Synapse in gepulsten neuronalen Netzen 97 5.8 Vergleich, Ausblick und weiterführende Verbesserung des Bauelements 105 6 Zusammenfassung und Ausblick 109 Literaturverzeichnis XI Curriculum Vitae XXXVIII Publikationsliste XL Selbstständigkeitserklärung XLIII

Page generated in 0.2484 seconds