• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 218
  • 127
  • Tagged with
  • 341
  • 341
  • 341
  • 341
  • 341
  • 42
  • 23
  • 22
  • 22
  • 21
  • 21
  • 20
  • 20
  • 19
  • 18
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
71

Beiträge zur additiven Herstellung biokompatibler flexibler und dehnbarer Elektronik

Schubert, Martin 13 April 2021 (has links)
Die Etablierung der Telemedizin stellt neue Herausforderungen an die Aufbau- und Verbindungstechnik der Elektronik. Neue medizintechnische Anwendungen für die breite Gesellschaft erfordern biokompatible, flexible und dehnbare Elektronik, die zugleich kostengünstig und individuell hergestellt werden kann. Einen vielversprechenden Ansatz bietet die Verwendung additiver Herstellungsverfahren. Gegenstand dieser Arbeit ist die Materialauswahl für flexible und dehnbare Mikrosysteme vor dem Hintergrund der Anforderungen für zukünftige biomedizinische Anwendungen und unter Verwendung ausschließlich additiver Verfahren. Der grundlegende Aufbau gedruckter Elektronik, bestehend aus Leiterzügen verschiedener Nanopartikeltinten und polymeren Substraten, wird hinsichtlich biologischer und mechanischer Eigenschaften untersucht. Diese Charakterisierung beinhaltet die Evaluation der Zytotoxizität, Haftfestigkeit, Biegebelastung und Dehnungsbelastung der Materialkombinationen. Im Fokus steht der Inkjetdruck von Platintinte auf flexiblen Polyimid- und dehnbaren Polyurethansubstraten. Aufgrund der Inkompatibilität zwischen der erforderlichen Sintertemperatur der Platintinte und der Erweichungstemperatur des Polyurethans, wird das photonische Sintern untersucht. Dafür kommen Lasersintern und Blitzlampensintern zum Einsatz. Die Platintinte zeigt ausgezeichnete Eigenschaften im Zytotoxizitätstest durch 98 %ige Zellvitalität im Vergleich zur biokompatiblen Referenz. Die bestimmten Haftfestigkeiten liegen zwischen 0,5N/mm2 und 2,5N/mm2 und entsprechen damit aktuellen Literaturwerten. Weiterhin zeigt das Ergebnis von Biegetests vielversprechende flexible Eigenschaften. Der Widerstand nach 180 000 Biegezyklen erhöht sich bei einem Biegeradius von 5mm um maximal 9,5% und bei 2mm um maximal 42 %. Die Dehnungstests mit Horseshoestrukturen aus Silbertinte zeigen ca. 400 Dehnungszyklen bei 10% Dehnung und ca. 400 Zyklen bei 20% Dehnung bis zur vollständiger Leiterzugunterbrechung. Zwei Demonstratoren validieren das Potential der ausschließlichen Nutzung von additiven Prozessen zur Herstellung biomedizinischer Mikrosysteme. Der erste Demonstrator ist eine Hautelektrode, welche sich durch temporären Elektroden-Hautkontakt zur Hautleitwertmessung eignet. Der zweite Demonstrator beinhaltet eine miniaturisierte, gedruckte Interdigitalelektrode, die durch die Anwendung von Nanosekundenimpulsen in der Lage ist, Zellen zu manipulieren. Die Erkenntnisse aus dieser Arbeit zeigen das große Potential der Nutzung additiver Prozesse für die Herstellung von Medizinprodukten.
72

Next Generation Header Compression

Tömösközi, Mate 26 April 2021 (has links)
Header compression is one of the technologies, which enables packet-switched computer networks to operate with higher efficiency even if the underlying physical link is limited. Since its inception, the compression was meant to improve dial-up Telnet connections, and has evolved into a complex multi-faceted compression library, which has been integrated into the third and fourth generation of cellular networks, among others. Beyond the promised benefit of decreased bandwidth usage, header compression has shown that it is capable of improving the quality of already existing services, such as real-time audio calls, and is a developing hot topic to this day, realising, for example, Internet Protocol (IP) version 6 support on resource constrained low-power devices. However, header compression is ill equipped to handle the stringent requirements and challenges, which are posed by the coming fifth generation of wireless and cellular networks (5G) and its applications. Even though it can be considered as an already well developed area of computer networks that can compress protocol headers with unparalleled efficiency, header compression is still operating under some assumptions and restrictions that could deny its employment outside of cellular Voice over IP transmissions to certain degrees. Albeit some improvements in the latency domain could be achieved with its help, the application of header compression in both largely interconnected networks and very dynamic ones – such as the wireless mesh and vehicular networks – is not yet assured, as the topic, in this perspective, is still relatively new and unexplored. The main goal of my theses is the presentation and evaluation of novel ideas, which support the application of header compression concepts for the future wireless use-cases, as it holds alluring benefits for the coming network generations, if applied correctly. The dissertation provides a detailed treatment of my contribution in the specific research areas of header compression and network coding, which encompass novel proposals for their enhancement in 5G uses, such as broadcastability and online optimisation, as well as their subsequent analysis from various perspectives, including the achievable compression gains, delay reduction, transmission efficiency, and energy consumption, to name a few. Besides the focus on enabling header compression in 5G, the development of traffic-agnostic and various network-coded compression concepts are also introduced to attain the benefits of both techniques at the same time, namely, reduced bandwidth usage and high reliability in latency sensitive heterogeneous and error prone mesh networks. The generalisation of compression is achieved by the employment of various machine learning concepts, which could approximate the compression characteristics of any packet-based communication flow, while network coding facilitates the exploitation of the low-latency benefits of error correcting codes in heavily interconnected wireless networks.
73

Unified Framework for Multicarrier and Multiple Access based on Generalized Frequency Division Multiplexing

Nimr, Ahmad 08 July 2021 (has links)
The advancements in wireless communications are the key-enablers of new applications with stringent requirements in low-latency, ultra-reliability, high data rate, high mobility, and massive connectivity. Diverse types of devices, ranging from tiny sensors to vehicles, with different capabilities need to be connected under various channel conditions. Thus, modern connectivity and network techniques at all layers are essential to overcome these challenges. In particular, the physical layer (PHY) transmission is required to achieve certain link reliability, data rate, and latency. In modern digital communications systems, the transmission is performed by means of a digital signal processing module that derives analog hardware. The performance of the analog part is influenced by the quality of the hardware and the baseband signal denoted as waveform. In most of the modern systems such as fifth generation (5G) and WiFi, orthogonal frequency division multiplexing (OFDM) is adopted as a favorite waveform due to its low-complexity advantages in terms of signal processing. However, OFDM requires strict requirements on hardware quality. Many devices are equipped with simplified analog hardware to reduce the cost. In this case, OFDM does not work properly as a result of its high peak-to-average power ratio (PAPR) and sensitivity to synchronization errors. To tackle these problems, many waveforms design have been recently proposed in the literature. Some of these designs are modified versions of OFDM or based on conventional single subcarrier. Moreover, multicarrier frameworks, such as generalized frequency division multiplexing (GFDM), have been proposed to realize varieties of conventional waveforms. Furthermore, recent studies show the potential of using non-conventional waveforms for increasing the link reliability with affordable complexity. Based on that, flexible waveforms and transmission techniques are necessary to adapt the system for different hardware and channel constraints in order to fulfill the applications requirements while optimizing the resources. The objective of this thesis is to provide a holistic view of waveforms and the related multiple access (MA) techniques to enable efficient study and evaluation of different approaches. First, the wireless communications system is reviewed with specific focus on the impact of hardware impairments and the wireless channel on the waveform design. Then, generalized model of waveforms and MA are presented highlighting various special cases. Finally, this work introduces low-complexity architectures for hardware implementation of flexible waveforms. Integrating such designs with software-defined radio (SDR) contributes to the development of practical real-time flexible PHY.:1 Introduction 1.1 Baseband transmission model 1.2 History of multicarrier systems 1.3 The state-of-the-art waveforms 1.4 Prior works related to GFDM 1.5 Objective and contributions 2 Fundamentals of Wireless Communications 2.1 Wireless communications system 2.2 RF transceiver 2.2.1 Digital-analogue conversion 2.2.2 QAM modulation 2.2.3 Effective channel 2.2.4 Hardware impairments 2.3 Waveform aspects 2.3.1 Single-carrier waveform 2.3.2 Multicarrier waveform 2.3.3 MIMO-Waveforms 2.3.4 Waveform performance metrics 2.4 Wireless Channel 2.4.1 Line-of-sight propagation 2.4.2 Multi path and fading process 2.4.3 General baseband statistical channel model 2.4.4 MIMO channel 2.5 Summary 3 Generic Block-based Waveforms 3.1 Block-based waveform formulation 3.1.1 Variable-rate multicarrier 3.1.2 General block-based multicarrier model 3.2 Waveform processing techniques 3.2.1 Linear and circular filtering 3.2.2 Windowing 3.3 Structured representation 3.3.1 Modulator 3.3.2 Demodulator 3.3.3 MIMO Waveform processing 3.4 Detection 3.4.1 Maximum-likelihood detection 3.4.2 Linear detection 3.4.3 Iterative Detection 3.4.4 Numerical example and insights 3.5 Summary 4 Generic Multiple Access Schemes 57 4.1 Basic multiple access and multiplexing schemes 4.1.1 Infrastructure network system model 4.1.2 Duplex schemes 4.1.3 Common multiplexing and multiple access schemes 4.2 General multicarrier-based multiple access 4.2.1 Design with fixed set of pulses 4.2.2 Computational model 4.2.3 Asynchronous multiple access 4.3 Summary 5 Time-Frequency Analyses of Multicarrier 5.1 General time-frequency representation 5.1.1 Block representation 5.1.2 Relation to Zak transform 5.2 Time-frequency spreading 5.3 Time-frequency block in LTV channel 5.3.1 Subcarrier and subsymbol numerology 5.3.2 Processing based on the time-domain signal 5.3.3 Processing based on the frequency-domain signal 5.3.4 Unified signal model 5.4 summary 6 Generalized waveforms based on time-frequency shifts 6.1 General time-frequency shift 6.1.1 Time-frequency shift design 6.1.2 Relation between the shifted pulses 6.2 Time-frequency shift in Gabor frame 6.2.1 Conventional GFDM 6.3 GFDM modulation 6.3.1 Filter bank representation 6.3.2 Block representation 6.3.3 GFDM matrix structure 6.3.4 GFDM demodulator 6.3.5 Alternative interpretation of GFDM 6.3.6 Orthogonal modulation and GFDM spreading 6.4 Summary 7 Modulation Framework: Architectures and Applications 7.1 Modem architectures 7.1.1 General modulation matrix structure 7.1.2 Run-time flexibility 7.1.3 Generic GFDM-based architecture 7.1.4 Flexible parallel multiplications architecture 7.1.5 MIMO waveform architecture 7.2 Extended GFDM framework 7.2.1 Architectures complexity and flexibility analysis 7.2.2 Number of multiplications 7.2.3 Hardware analysis 7.3 Applications of the extended GFDM framework 7.3.1 Generalized FDMA 7.3.2 Enchantment of OFDM system 7.4 Summary 7 Conclusions and Future works
74

A Fast Switchable and Band-Tunable 5-7.5GHz LNA in 45nm CMOS SOI Technology for Multi-Standard Wake-up Radios

Ma, Rui, Kreißig, Martin, Ellinger, Frank 20 August 2019 (has links)
This work presents design and full implementation of a fast switchable and band-tunable 5 - 7.5 GHz low noise amplifier (LNA) in a 45nm CMOS SOI technology. The target application are wake-up receivers that employ aggressive duty cycling. Based on a cascode topology, the LNA utilizes a transformer for its 50 input matching as well as a balun with a capacitor bank to realize 8 digitally selectable bands. According to measurement results, the fabricated LNA exhibits a voltage gain of 18 - 21 dB while drawing a current of merely 2.2mA from a 1V supply. At all the 8 bands from 5 to 7.5 GHz, the input reflection coefficient lies below -8 dB, and the noise figure ranges from 7.8 to 6.2 dB. The LNA is able to settle in less than 9.5 ns
75

Identification of Suspicious Semiconductor Devices Using Independent Component Analysis with Dimensionality Reduction

Bartholomäus, Jenny, Wunderlich, Sven, Sasvári, Zoltán 22 August 2019 (has links)
In the semiconductor industry the reliability of devices is of paramount importance. Therefore, after removing the defective ones, one wants to detect irregularities in measurement data because corresponding devices have a higher risk of failure early in the product lifetime. The paper presents a method to improve the detection of such suspicious devices where the screening is made on transformed measurement data. Thereby, e.g., dependencies between tests can be taken into account. Additionally, a new dimensionality reduction is performed within the transformation, so that the reduced and transformed data comprises only the informative content from the raw data. This simplifies the complexity of the subsequent screening steps. The new approach will be applied to semiconductor measurement data and it will be shown, by means of examples, how the screening can be improved.
76

Revealing the Morphology of Small Molecule Organic Solar Cell by Electron Microscopy

Sedighi, Mona 11 February 2022 (has links)
Die steigende Nachfrage nach erneuerbarer elektrischer Energie erfordert neue photovoltaische Technologien. Effiziente organische Solarzellen mit gemischten, absorbierenden organischen Molekülen wandeln Sonnenlicht in Elektrizität um und die jüngsten Rekorde des Wirkungsgrads zeigen das Potenzial für eine alternative Energieerzeugung. Trotz dieser Durchbrüche führt die Verwendung komplexer organischer Moleküle, die zu einer selbstorganisierten Absorberschicht zusammengemischt werden, zu komplizierten Morphologien, die bisher nur unzureichend abgebildet werden konnten. Die Morphologie hat jedoch einen entscheidenden Einfluss auf die Umwandlung von Photonen in Elektronen und auf den Photostrom, was sich auf die Gesamtleistung der Solarzelle auswirkt. Diese Dissertation ist eine Studie über die Morphologie organischer Dünnfilm-Mischschichten in verschiedenen organischen Solarzellen unter Verwendung analytischer Elektronenmikroskopietechniken (REM, TEM, EDX). In einem weiteren Schritt werden auch die Einflüsse der Mikrostruktureigenschaften dieser im Vakuum abgeschiedenen organischen Solarzellen auf ihre elektronischen Eigenschaften untersucht. Diese Studie umfasst bekannte Zinkphthalocyanin- (ZnPc) und Fulleren (C60) Mischschichten (ZnPc:C60) sowie neu entwickelte Materialien, DTDCTB und NGX gemischt mit C60. Auf mikroskopischer Skala wurde der Einfluss der Abscheidung der oben genannten Schichten auf unterschiedlich erhitzte Substrate, sowie deren Auswirkungen auf die elektronische Leistungsfähigkeit untersucht. Es wurden drei sehr unterschiedliche Wachstumssysteme beobachtet: • Filme mit guter Phasentrennung (ZnPc:C60) • Gut gemischte dünne Schichten (DTDCTB:C60) • Selbstorganisierende Nanodrähte (NGX:C60) Um die gewachsene Mikrostruktur zu erklären werden thermodynamische Modelle zur Erklärung der experimentellen Ergebnisse eingesetzt. Diese Arbeit bietet daher einen Rahmen, der die Planung zukünftiger Experimente leiten kann. Für die in dieser Arbeit untersuchten Schichtsysteme konnte die Korrelation zwischen den Präparationsbedingungen und der Leistungsfähigkeit der Solarzellen durch die beobachtete Mikrostruktur und die Phasenseparation von Donor und Akzeptor gut erklärt werden.:1 MOTIVATION AND INTRODUCTION 5 2 THEORETICAL FUNDAMENTALS 2.1 BASICS OF ORGANIC SOLAR CELLS 2.1.1 Organic semiconductors materials 2.1.2 Working principle of organic solar cells 2.1.3 Characteristic curves of solar cells 2.1.4 Concept of bulk heterojunction 2.1.5 Morphology and phase separation 2.2 RELEVANT LENGTH SCALES IN THE STUDY OF ORGANIC SOLAR CELLS 2.3 THE SCANNING ELECTRON MICROSCOPE 2.3.1 Introduction and working principle 2.3.2 Interaction of primary electrons with sample 2.3.3 Detecting SE and BSE electrons 2.3.4 SEM tool with FIB 2.4 THE TRANSMISSION ELECTRON MICROSCOPE 2.4.1 Working principle and components of TEM 2.4.2 Scattering in TEM 2.4.3 Operation modes in TEM 2.5 ANALYTICAL ELECTRON MICROSCOPY 2.5.1 EDX in TEM 2.5.2 EDX with high-tech detectors 2.6 CHALLENGES OF ELECTRON MICROSCOPY ON ORGANIC MATERIALS 2.6.1 Contrast formation and electron scattering 2.6.2 Damage induced by electron beam 2.6.3 Contrast formation and electron scattering 2.6.4 Necessity of low energy microscopy 3 MATERIALS AND METHODS 3.1 DONORS AND ACCEPTOR 3.1.1 The donor ZnPc 3.1.2 The donor DTDCTB 3.1.3 The donor NGX 3.1.1 The acceptor C60 3.2 FABRICATION OF ORGANIC SOLAR CELL DEVICES AND THIN FILMS 3.2.1 Vacuum deposition 3.2.2 Solar cell devices 3.2.3 Electrical Characterization 3.2.4 Organic thin films on the substrate 3.3 ELECTRON MICROSCOPES AND SAMPLE PREPARATION 3.3.1 Cross-sections using focused ion beam 3.3.2 Experimental details used in TEM/SEM 4 RESULTS AND DISCUSSIONS 4.1 ZNPC AS DONOR MATERIAL 4.1.1 Morphology of ZnPc:C60 thin films 4.1.2 Solar cell devices with ZnPc:C60 active layer 4.1.3 Conclusions and discussion 4.2 DTDCTB AS DONOR MATERIAL 4.2.1 Peculiar performance of the solar cell 4.2.2 Morphology of DTDCTB:C60 thin films 4.2.3 Solar cell devices with DTDCTB:C60 active layer 4.2.4 Conclusions and discussion 4.3 NGX AS DONOR MATERIAL 4.3.1 Morphology of NGX:C60 thin films 4.3.2 Conclusions and discussion 5 CONCLUSION AND OUTLOOK 6 APPENDIX A1 NEAREST NEIGHBOR DISTANCE A2 FROM DARK FIELD TEM IMAGES TO THE ELEMENTAL MAP A3 COMPARING THE COMPOSITION OF DARK AND BRIGHT POINTS IN THE EDX-ELEMENTAL A4 ROUGHNESS MEASUREMENTS FROM EDX IMAGES A5 SPECTROSCOPY MEASUREMENTS ON DTDCTB:C60 7 LISTS 7.1 ABBREVIATIONS 1.: Acronyms B2.: Materials B3.: Symbols 7.2 LIST OF FIGURES 7.3 LIST OF TABLES BIBLIOGRAPHY
77

Real-Time Waveform Prototyping

Danneberg, Martin 01 March 2022 (has links)
Mobile Netzwerke der fünften Generation zeichen sich aus durch vielfältigen Anforderungen und Einsatzszenarien. Drei unterschiedliche Anwendungsfälle sind hierbei besonders relevant: 1) Industrie-Applikationen fordern Echtzeitfunkübertragungen mit besonders niedrigen Ausfallraten. 2) Internet-of-things-Anwendungen erfordern die Anbindung einer Vielzahl von verteilten Sensoren. 3) Die Datenraten für Anwendung wie z.B. der Übermittlung von Videoinhalten sind massiv gestiegen. Diese zum Teil gegensätzlichen Erwartungen veranlassen Forscher und Ingenieure dazu, neue Konzepte und Technologien für zukünftige drahtlose Kommunikationssysteme in Betracht zu ziehen. Ziel ist es, aus einer Vielzahl neuer Ideen vielversprechende Kandidatentechnologien zu identifizieren und zu entscheiden, welche für die Umsetzung in zukünftige Produkte geeignet sind. Die Herausforderungen, diese Anforderungen zu erreichen, liegen jedoch jenseits der Möglichkeiten, die eine einzelne Verarbeitungsschicht in einem drahtlosen Netzwerk bieten kann. Daher müssen mehrere Forschungsbereiche Forschungsideen gemeinsam nutzen. Diese Arbeit beschreibt daher eine Plattform als Basis für zukünftige experimentelle Erforschung von drahtlosen Netzwerken unter reellen Bedingungen. Es werden folgende drei Aspekte näher vorgestellt: Zunächst erfolgt ein Überblick über moderne Prototypen und Testbed-Lösungen, die auf großes Interesse, Nachfrage, aber auch Förderungsmöglichkeiten stoßen. Allerdings ist der Entwicklungsaufwand nicht unerheblich und richtet sich stark nach den gewählten Eigenschaften der Plattform. Der Auswahlprozess ist jedoch aufgrund der Menge der verfügbaren Optionen und ihrer jeweiligen (versteckten) Implikationen komplex. Daher wird ein Leitfaden anhand verschiedener Beispiele vorgestellt, mit dem Ziel Erwartungen im Vergleich zu den für den Prototyp erforderlichen Aufwänden zu bewerten. Zweitens wird ein flexibler, aber echtzeitfähiger Signalprozessor eingeführt, der auf einer software-programmierbaren Funkplattform läuft. Der Prozessor ermöglicht die Rekonfiguration wichtiger Parameter der physikalischen Schicht während der Laufzeit, um eine Vielzahl moderner Wellenformen zu erzeugen. Es werden vier Parametereinstellungen 'LLC', 'WiFi', 'eMBB' und 'IoT' vorgestellt, um die Anforderungen der verschiedenen drahtlosen Anwendungen widerzuspiegeln. Diese werden dann zur Evaluierung der die in dieser Arbeit vorgestellte Implementierung herangezogen. Drittens wird durch die Einführung einer generischen Testinfrastruktur die Einbeziehung externer Partner aus der Ferne ermöglicht. Das Testfeld kann hier für verschiedenste Experimente flexibel auf die Anforderungen drahtloser Technologien zugeschnitten werden. Mit Hilfe der Testinfrastruktur wird die Leistung des vorgestellten Transceivers hinsichtlich Latenz, erreichbarem Durchsatz und Paketfehlerraten bewertet. Die öffentliche Demonstration eines taktilen Internet-Prototypen, unter Verwendung von Roboterarmen in einer Mehrbenutzerumgebung, konnte erfolgreich durchgeführt und bei mehreren Gelegenheiten präsentiert werden.:List of figures List of tables Abbreviations Notations 1 Introduction 1.1 Wireless applications 1.2 Motivation 1.3 Software-Defined Radio 1.4 State of the art 1.5 Testbed 1.6 Summary 2 Background 2.1 System Model 2.2 PHY Layer Structure 2.3 Generalized Frequency Division Multiplexing 2.4 Wireless Standards 2.4.1 IEEE 802.15.4 2.4.2 802.11 WLAN 2.4.3 LTE 2.4.4 Low Latency Industrial Wireless Communications 2.4.5 Summary 3 Wireless Prototyping 3.1 Testbed Examples 3.1.1 PHY - focused Testbeds 3.1.2 MAC - focused Testbeds 3.1.3 Network - focused testbeds 3.1.4 Generic testbeds 3.2 Considerations 3.3 Use cases and Scenarios 3.4 Requirements 3.5 Methodology 3.6 Hardware Platform 3.6.1 Host 3.6.2 FPGA 3.6.3 Hybrid 3.6.4 ASIC 3.7 Software Platform 3.7.1 Testbed Management Frameworks 3.7.2 Development Frameworks 3.7.3 Software Implementations 3.8 Deployment 3.9 Discussion 3.10 Conclusion 4 Flexible Transceiver 4.1 Signal Processing Modules 4.1.1 MAC interface 4.1.2 Encoding and Mapping 4.1.3 Modem 4.1.4 Post modem processing 4.1.5 Synchronization 4.1.6 Channel Estimation and Equalization 4.1.7 Demapping 4.1.8 Flexible Configuration 4.2 Analysis 4.2.1 Numerical Precision 4.2.2 Spectral analysis 4.2.3 Latency 4.2.4 Resource Consumption 4.3 Discussion 4.3.1 Extension to MIMO 4.4 Summary 5 Testbed 5.1 Infrastructure 5.2 Automation 5.3 Software Defined Radio Platform 5.4 Radio Frequency Front-end 5.4.1 Sub 6 GHz front-end 5.4.2 26 GHz mmWave front-end 5.5 Performance evaluation 5.6 Summary 6 Experiments 6.1 Single Link 6.1.1 Infrastructure 6.1.2 Single Link Experiments 6.1.3 End-to-End 6.2 Multi-User 6.3 26 GHz mmWave experimentation 6.4 Summary 7 Key lessons 7.1 Limitations Experienced During Development 7.2 Prototyping Future 7.3 Open points 7.4 Workflow 7.5 Summary 8 Conclusions 8.1 Future Work 8.1.1 Prototyping Workflow 8.1.2 Flexible Transceiver Core 8.1.3 Experimental Data-sets 8.1.4 Evolved Access Point Prototype For Industrial Networks 8.1.5 Testbed Standardization A Additional Resources A.1 Fourier Transform Blocks A.2 Resource Consumption A.3 Channel Sounding using Chirp sequences A.3.1 SNR Estimation A.3.2 Channel Estimation A.4 Hardware part list / The demand to achieve higher data rates for the Enhanced Mobile Broadband scenario and novel fifth generation use cases like Ultra-Reliable Low-Latency and Massive Machine-type Communications drive researchers and engineers to consider new concepts and technologies for future wireless communication systems. The goal is to identify promising candidate technologies among a vast number of new ideas and to decide, which are suitable for implementation in future products. However, the challenges to achieve those demands are beyond the capabilities a single processing layer in a wireless network can offer. Therefore, several research domains have to collaboratively exploit research ideas. This thesis presents a platform to provide a base for future applied research on wireless networks. Firstly, by giving an overview of state-of-the-art prototypes and testbed solutions. Secondly by introducing a flexible, yet real-time physical layer signal processor running on a software defined radio platform. The processor enables reconfiguring important parameters of the physical layer during run-time in order to create a multitude of modern waveforms. Thirdly, by introducing a generic test infrastructure, which can be tailored to prototype diverse wireless technology and which is remotely accessible in order to invite new ideas by third parties. Using the test infrastructure, the performance of the flexible transceiver is evaluated regarding latency, achievable throughput and packet error rates.:List of figures List of tables Abbreviations Notations 1 Introduction 1.1 Wireless applications 1.2 Motivation 1.3 Software-Defined Radio 1.4 State of the art 1.5 Testbed 1.6 Summary 2 Background 2.1 System Model 2.2 PHY Layer Structure 2.3 Generalized Frequency Division Multiplexing 2.4 Wireless Standards 2.4.1 IEEE 802.15.4 2.4.2 802.11 WLAN 2.4.3 LTE 2.4.4 Low Latency Industrial Wireless Communications 2.4.5 Summary 3 Wireless Prototyping 3.1 Testbed Examples 3.1.1 PHY - focused Testbeds 3.1.2 MAC - focused Testbeds 3.1.3 Network - focused testbeds 3.1.4 Generic testbeds 3.2 Considerations 3.3 Use cases and Scenarios 3.4 Requirements 3.5 Methodology 3.6 Hardware Platform 3.6.1 Host 3.6.2 FPGA 3.6.3 Hybrid 3.6.4 ASIC 3.7 Software Platform 3.7.1 Testbed Management Frameworks 3.7.2 Development Frameworks 3.7.3 Software Implementations 3.8 Deployment 3.9 Discussion 3.10 Conclusion 4 Flexible Transceiver 4.1 Signal Processing Modules 4.1.1 MAC interface 4.1.2 Encoding and Mapping 4.1.3 Modem 4.1.4 Post modem processing 4.1.5 Synchronization 4.1.6 Channel Estimation and Equalization 4.1.7 Demapping 4.1.8 Flexible Configuration 4.2 Analysis 4.2.1 Numerical Precision 4.2.2 Spectral analysis 4.2.3 Latency 4.2.4 Resource Consumption 4.3 Discussion 4.3.1 Extension to MIMO 4.4 Summary 5 Testbed 5.1 Infrastructure 5.2 Automation 5.3 Software Defined Radio Platform 5.4 Radio Frequency Front-end 5.4.1 Sub 6 GHz front-end 5.4.2 26 GHz mmWave front-end 5.5 Performance evaluation 5.6 Summary 6 Experiments 6.1 Single Link 6.1.1 Infrastructure 6.1.2 Single Link Experiments 6.1.3 End-to-End 6.2 Multi-User 6.3 26 GHz mmWave experimentation 6.4 Summary 7 Key lessons 7.1 Limitations Experienced During Development 7.2 Prototyping Future 7.3 Open points 7.4 Workflow 7.5 Summary 8 Conclusions 8.1 Future Work 8.1.1 Prototyping Workflow 8.1.2 Flexible Transceiver Core 8.1.3 Experimental Data-sets 8.1.4 Evolved Access Point Prototype For Industrial Networks 8.1.5 Testbed Standardization A Additional Resources A.1 Fourier Transform Blocks A.2 Resource Consumption A.3 Channel Sounding using Chirp sequences A.3.1 SNR Estimation A.3.2 Channel Estimation A.4 Hardware part list
78

Reliability analysis of foil substrate based integration of silicon chips

Palavesam, Nagarajan 07 December 2020 (has links)
Flexible electronics has attracted significant attention in the recent past due to the booming wearables market in addition to the ever-increasing interest for faster, thinner and foldable mobile phones. Ultra-thin bare silicon ICs fabricated by thinning down standard ICs to thickness below 50 μm are flexible and therefore they can be integrated on or in polymer foils to create flexible hybrid electronic (FHE) components that could be used to replace rigid standard surface mount device (SMD) components. The fabricated FHE components referred as chip foil packages (CFPs) in this work are ideal candidates for FHE system integration owing to their ability to deliver high performance at low power consumption while being mechanically flexible. However, very limited information is available in the literature regarding the reliability of CFPs under static and dynamic bending. The lack of such vital information is a major obstacle impeding their commercialization. With the aim of addressing this issue, this thesis investigates the static and dynamic bending reliability of CFPs. In this scope, the static bending reliability of CFPs has been investigated in this thesis using flexural bending tests by measuring their fracture strength. Then, Finite Element Method (FEM) simulations have been implemented to calculate the fracture stress of ultra-thin flexible silicon chips where analytical formulas may not be applied. After calculating the fracture stress from FEM simulations, the enhancement in robustness of ultra-thin chips (UTCs) against external load has also been proved and quantified with further experimental investigations. Besides, FEM simulations have also been used to analyse the effect of Young’s Modulus of embedding materials on the robustness of the embedded UTCs. Furthermore, embedding the UTCs in polymer layers has also been experimentally proven to be an effective solution to reduce the influence of thinning and dicing induced damages on the robustness of the embedded UTCs. Traditional interconnection techniques such as wire bonding may not be implemented to interconnect ultra-thin silicon ICs owing to the high mechanical forces involved in the processes that would crack the chips. Therefore, two novel interconnection methods namely (i) flip-chip bonding with Anisotropic Conductive Adhesive (ACA) and (ii) face-up direct metal interconnection have been implemented in this thesis to interconnect ultra-thin silicon ICs to the corresponding interposer patterns on foil substrates. The CFP samples thus fabricated were then used for the dynamic bending reliability investigations. A custom-built test equipment was developed to facilitate the dynamic bending reliability investigations of CFPs. Experimental investigations revealed that the failure of CFPs under dynamic bending was caused mainly by the cracking of the redistribution layer (RDL) interconnecting the chip and the foil. Furthermore, it has also been shown that the CFPs are more vulnerable to repeated compressive bending than to repeated tensile bending. Then, the influence of dimensional factors such as the thickness of the chip as well as the RDL on the dynamic bending reliability of CFPs have also been studied. Upon identifying the plausible cause behind the cracking of the RDL leading to the failure of the CFPs, two methods to improve the dynamic bending reliability of the RDL have been suggested and demonstrated with experimental investigations. The experimental investigations presented in this thesis adds some essential information to the state-of-the-art concerning the static and the dynamic bending reliability of UTCs integrated in polymer foils that are not yet available in the literature and aids to establish in-depth knowledge of mechanical reliability of the components required for manufacturing future FHE systems. The strategies devised to enhance the robustness of UTCs and CFPs could serve as guidelines for fabricating reliable FHE components and systems.
79

Resistive Electrical Field Grading of Insulation Oil-Solid Interfaces

Backhaus, Karsten, Bauer, Johann 02 March 2022 (has links)
There is always a need for more compact designs of power transformers free of partial discharges, in order to save cost on the construction and required material resources. The physical geometric constrictions inside the transformer tank would demand field-grading techniques to homogenise the field strength distribution on oil-solid interfaces, when required. Standard filler materials such as carbon black or silicon carbide (SiC) have a too high electrical conductivity yielding an appropriate grading field strength values for air-related applications. Because insulation oil has a higher electrical breakdown strength, the electrical conductivity must be engineered to lower values in order to reach a higher effective grading field strength. This paper presents the investigation of a new material system based on a phenolic resin Lerg FL-500 and the electrically functionalized ceramic filler particles Merck Iriotec®7550 that enable a resistive electrical field grading in insulation oil. In order to verify the principle functionality of the proposed field grading system, a layer is applied on a substrate surface representing possible oil-solid-interface inside oil-filled power transformers. First, the manuscript describes the methods of specimen preparation and the measurement of the nonlinear current-time behaviour under AC voltage stress for different filler contents. Second, a concurring optical and electrical determination of the partial discharge inception and extinction voltage of a modified Toepler arrangement allows the indirect determination of the electrical field strength distribution along the functionalized layer without the need of direct measurement. To do so, the radius of the circular functional layer is varied and with it the specific grading length. In analogy to state of the art SiC-filled systems, a linear dependency between the effective grading length and the PD inception voltage is observed. The quotient of voltage drop over a varied radius yields the effective graded electric field strength.
80

Application of Silicon-on-Nothing and carbon sacrificial layer methods in suspended pressure and temperature sensing micromechanical systems

Kravchenko, Andrey 20 January 2022 (has links)
Main goal of this thesis is evaluation of the available SON and sacrificial layer technologies from the perspective of temperature sensor design. Based on the findings, a series of detector architectures is proposed. The work is subdivided into two major parts, with the first one targeting the process characterization. Good command of the selected technology, awareness of its dependencies and limitations, is essential and has to be examined prior to any MEMS design. Pressure related topics are of particular interest, since this criterion, among others, highly influences the performance of thermal systems. Knowledge of the critical parameters is applied in the second half, where the actual IR sensor design is considered. Process characterization, required for thermal insulation estimations, is not the only link between the two physics fields. Discussed IR detectors are highly inspired by the developed pressure sensing solutions. This resulted in either similar operation principles being applied, or even the same fabricated structures being adapted for new use.:List of abbreviations List of Figures List of Tables Acknowledgements 1 Introduction 1.1 Motivation and organization of the work 1.2 Microstructure fabrication methods 1.2.1 Surface micromachining 1.2.2 Bulk micromachining 1.2.3 SOI and SON structuring 2 Pressure sensor for process characterization applications 2.1 Motivation 2.2 Pirani gauge approach 2.2.1 Principles of operation and state of the art 2.2.2 Modelling 2.2.2.1 Setup 2.2.2.2 Results 2.2.3 Processing 2.2.4 Measurement 2.2.4.1 Setup 2.2.4.2 Results 2.2.5 Application 2.2.5.1 Outgassing characterization 2.2.5.2 Reliability investigation 2.2.5.3 Thermal emitter for IR spectroscopy 2.2.5.4 Active pressure sensor 2.3 Capacitive sensor approach 2.3.1 Principles of operation and state of the art 2.3.2 Surface channel approach 2.3.3 SON channel approach 2.3.4 Application 2.3.4.1 MEMS dynamic characterization 2.3.4.2 Differential capacitive pressure sensor 2.4 Summary and overview of results 3 Temperature sensor for IR applications 3.1 Motivation 3.2 Resistive sensor approach 3.2.1 Principles of operation 3.2.2 Modelling 3.2.3 Measurement 3.3 Capacitive sensor approach 3.3.1 Principles of operation 3.3.2 Modelling 3.3.2.1 Setup 3.3.2.2 Results 3.3.3 Processing 3.4 Junction - based approach 3.4.1 State of the art 3.4.2 Thermal insulation design 3.4.2.1 Overview 3.4.2.2 Processing 3.4.2.3 Thermal performance 3.4.3 Detector design 3.4.3.1 Diode sensing solution 3.4.3.2 Bipolar Junction Transistor sensing solution 3.4.3.3 Junction Field Effect Transistor sensing solution 3.5 Summary and overview of results 4 Conclusion Bibliography

Page generated in 0.1914 seconds