• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 141
  • 134
  • Tagged with
  • 273
  • 273
  • 273
  • 273
  • 273
  • 61
  • 33
  • 27
  • 15
  • 15
  • 15
  • 15
  • 15
  • 14
  • 13
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
141

Strong Antibiotic Activity of the Myxocoumarin Scaffold in vitro and in vivo

Hertrampf, Gesa, Kusserow, Kalina, Vojnovic, Sandra, Pavic, Aleksandar, Müller, Jonas I., Nikodinovic-Runic, Jasmina, Gulder, Tobias A. M. 16 May 2024 (has links)
The increasing emergence of resistances against established antibiotics is a substantial threat to human health. The discovery of new compounds with potent antibiotic activity is thus of utmost importance. Within this work, we identify strong antibiotic activity of the natural product myxocoumarin B from Stigmatella aurantiaca MYX-030 against a range of clinically relevant bacterial pathogens, including clinical isolates of MRSA. A focused library of structural analogs was synthesized to explore initial structure-activity relationships and to identify equipotent myxocoumarin derivatives devoid of the natural nitro substituent to significantly streamline synthetic access. The cytotoxicity of the myxocoumarins as well as their potential to cure bacterial infections in vivo was established using a zebrafish model system. Our results reveal the exceptional antibiotic activity of the myxocoumarin scaffold and hence its potential for the development of novel antibiotics.
142

A Logic Gate Based on a Flexible Metal–Organic Framework (JUK-8) for the Concomitant Detection of Hydrogen and Oxygen

Roztocki, Kornel, Bon, Volodymyr, Senkovska, Irena, Matoga, Dariusz, Kaskel, Stefan 22 May 2024 (has links)
We present an autonomous, chemical logic gate based on a switchable metal–organic framework (MOF) composite, containing carbon nanoparticles and a Pt catalyst. The switchable MOF composite performs as AND logic gate. Hydrogen and oxygen gas streams serve as binary inputs. Catalytically formed water induces a structural transition (crystal volume expansion) of the MOF, and as a consequence, a detectable drop in conductance of the composite as a ‘true’ output only if both gases come in contact with the composite.
143

Hybride semi-parametrische Modellierung der thermooxidativen Stabilisierung von PAN-Precursorfasern

Mädler, Jonathan, Richter, Benjamin, Wolz, Daniel S. J., Behnisch, Thomas, Böhm, Robert, Jäger, Hubert, Gude, Maik, Urbas, Leon 22 May 2024 (has links)
Kohlenstofffasern sind aufgrund ihrer hohen massespezifischen mechanischen Belastbarkeit ein unverzichtbarer Werkstoff im Leichtbau. Diese werden mittels eines zeitaufwendigen, thermooxidativen Stabilisierungs- und eines inerten Carbonisierungsprozesses hergestellt. Bedingt durch die kommerziell dominierte Forschung basiert der Großteil der veröffentlichten Optimierungsansätze für diese Prozessschritte bis heute auf unvollständigen, empirischen oder nicht-parametrischen, datengetriebenen Modellen. In der vorliegenden Arbeit werden hybride semi-parametrische Ansätze unter Berücksichtigung der Eigenschaften des Precursorsystems und der Prozessparameter für die Modellierung des Stabilisierungsprozesses untersucht. / Carbon fibers are an indispensable material in lightweight construction due to their mass-specific mechanical load capaci-ty. These are produced by means of a time-consuming, thermo-oxidative stabilization process and an inert carbonizationprocess. Due to commercially dominated research, the majority of published optimization approaches for these processsteps to date is based on incomplete, empirical or non-parametric, data-driven models. In the present work, hybrid semi-parametric approaches considering the properties of the precursor system and the process parameters are investigated formodeling of the stabilization process.
144

From Ferroelectric Material Optimization to Neuromorphic Devices

Mikolajick, Thomas, Park, Min Hyuk, Begon-Lours, Laura, Slesazeck, Stefan 22 May 2024 (has links)
Due to the voltage driven switching at low voltages combined with nonvolatility of the achieved polarization state, ferroelectric materials have a unique potential for low power nonvolatile electronic devices. The competitivity of such devices is hindered by compatibility issues of well-known ferroelectrics with established semiconductor technology. The discovery of ferroelectricity in hafnium oxide changed this situation. The natural application of nonvolatile devices is as a memory cell. Nonvolatile memory devices also built the basis for other applications like in-memory or neuromorphic computing. Three different basic ferroelectric devices can be constructed: ferroelectric capacitors, ferroelectric field effect transistors and ferroelectric tunneling junctions. In this article first the material science of the ferroelectricity in hafnium oxide will be summarized with a special focus on tailoring the switching characteristics towards different applications.The current status of nonvolatile ferroelectric memories then lays the ground for looking into applications like in-memory computing. Finally, a special focus will be given to showcase how the basic building blocks of spiking neural networks, the neuron and the synapse, can be realized and how they can be combined to realize neuromorphic computing systems. A summary, comparison with other technologies like resistive switching devices and an outlook completes the paper.
145

Surface Modification of Fluorine-Doped Tin Oxide Thin Films Using Femtosecond Direct Laser Interference Patterning: A Study of the Optoelectronic Performance

Heffner, Herman, Soldera, Marcos, Ränke, Fabian, Lasagni, Andrés Fabián 10 January 2025 (has links)
Transparent conductive oxides (TCOs) are used in solar cells not only to extract photogenerated carriers but also to allow sunlight to reach the photoactive material. Therefore, controlling the electrical and optical properties of such oxides is crucial for the optimization of the efficiency of solar cells. Herein, direct laser interference patterning (DLIP) method is used to control the surface morphology, optical and electrical properties of fluorine-doped tin oxide (FTO) by applying femtosecond laser pulses. The topography characterization reveals periodic line-like microstructures with a period of 3.0 μm and average heights between 20 and 185 nm, depending on the applied laser fluence levels. Laser-induced periodic surface structures are observed on the valleys of the texture aligned perpendicularly to the laser radiation polarization. A relative increase in the average total and diffuse optical transmittance up to 5% and 500%, respectively, is obtained in the 400–800 nm spectral range as a consequence of the generated micro- and nanostructures. Calculations of two figures of merit suggest that the texturing of FTO might enhance the efficiency of solar cells, in particular dye-sensitized (DSSCs). The findings of this study confirm that DLIP is a convenient technique for structuring electrodes for highly efficient optoelectronic devices.
146

Development of yarns from recycled carbon fiber based on friction spinning technology with specific properties for thermoset composites

Abdkader, Anwar, Bachor, Samuel, Hasan, Mir Mohammad Badrul, Cherif, Chokri 16 January 2025 (has links)
Because of a growing demand and usage of carbon fiber, effective methods to re-use waste and recycled carbon fiber recoverable either from process scraps or from end-of-life components are attracting increased attention. The development of different hybrid yarn structures consisting of recycled carbon fiber and thermoplastic fibers (recycled carbon fiber content approx. 50% by weight) for thermoplastic composites have been reported earlier. Yarns with high recycled carbon fiber content (>90% by weight) required for thermoset composites are still not realizable due to high shortening in recycled carbon fiber length (≥70%) during different processing steps of spinning. The reason lies in low shear strength, smooth fiber surface and high brittleness of recycled carbon fiber. Second, a lack of crimp in recycled carbon fiber leads to drafting errors during the drawing and spinning process. In this paper, the spinning limit regarding the core to sheath ratio of noble yarns with a recycled carbon fiber content greater than 90% by weight based on friction spinning technology for thermoset composites is reported. Slivers of recycled carbon fiber solely required for the development of yarns are produced on carding and drawing machines optimized for the gentle processing of recycled carbon fiber. Furthermore, different spinning parameters such as spinning drum speed and suction air pressure are investigated and their effect on tensile properties of yarn is analyzed. The results show that yarns with high recycled carbon fiber content (>90% by weight) can be produced with reproducible quality on the DREF-3000 friction spinning machine.
147

Short overview on combustion systems scale-up with emphasis on NOx emissions of gas-fired furnaces

Drubetskoi, Eugen, Eckart, Sven, Krause, Hartmut 15 January 2025 (has links)
Historically, scale- up of technologies have been a fundamental driver for success-ful economies in enhancing performance of applications. In the context of com-bustion technologies, several scale- up approaches were developed with the aim of transferring relevant characteristics of combustion systems from laboratory- to industrial- scale system. A reasonable selection of scaling approaches is required to perform a proper scaling of a combustion system. In the current study, the development of scaling methods and their use for technical applications is pre-sented. In order to provide a guideline for the examination of combustion systems to be scaled up, common and recently published scale- up methods are compared qualitatively, as well as the investigation on scale- up of combustion chambers, is addressed. Due to the expected further technical and environmental restrictions, the focus of the implementation is directed towards NOx emissions.
148

Mass transfer during biopolymer aerogel production: measurement and modeling

Dirauf, Martin 05 February 2025 (has links)
This thesis aims to measure and model diffusive mass transfer processes during all three steps of biopolymer aerogel production using 1-D Raman spectroscopy: gelation in aqueous media, solvent exchange to an organic solvent, and supercritical drying using CO2. For the gelation step, the CO2 induced gelation of pectin gels was investigated. It could be shown that the liquid gelling solution likely solidifies immediately upon contact with CO2 and that therefore diffusion is the only relevant mass transfer mechanism. Solvent exchange and supercritical drying of cylindrical gel monoliths were exemplarily analyzed using agar and whey protein isolate gels. A convective mass transfer model that includes both, diffusion and advection due to volume changes upon mixing was implemented with the effective diffusion coefficient being the sole fit parameter. It was shown that advection can play a decisive role during supercritical drying due to the high excess volume of the CO2+EtOH system. In order to calculate the excess volume during supercritical drying, non-saturated binary mixture densities were experimentally determined for the four binary systems of CO2+EtOH, acetone, acetonitrile and DMSO from 308-333 K and 6-12 MPa over the whole composition range in the single-phase region. Tortuosity factors derived from the experimentally determined effective diffusion coefficients during solvent exchange and supercritical drying differed by a factor of two, although the gels did not show any shrinkage. This contradiction could be attributed to an incorrect prediction of the binary diffusion coefficient of EtOH+CO2 in common aerogel literature. Stepwise supercritical drying was then employed to experimentally analyze the true composition dependency of the binary diffusion coefficient of EtOH+CO2. Especially when solvent exchange is performed in onesingle step, unwanted shrinkage of the gel matrix can occur. It was shown that shrinkage leads to a heterogeneous density distribution of the gel network with a compaction towards its center. Most of the shrinkage takes place during the very beginning of solvent exchange when EtOH can be detected in the outermost layers only and that further shrinkage is prevented by a sharp increase in gels stiffness.
149

Molecular characteristics of bap-positive Staphylococcus aureus strains from dairy cow mastitis

Snel, Gustavo GM, Monecke, Stefan, Ehricht, Ralf, Piccinini, Renata 17 April 2020 (has links)
The biofilm-associated protein (Bap) of Staphylococcus aureus is a high molecular weight cell-wallanchored protein involved in biofilm formation, first described in bovine mastitis strains from Spain. So far, studies regarding Bap were mainly based on the Spanish strain V329 and its mutants, but no information on the genetic variability of bap-positive Staph. aureus strains is yet available in the literature. The present study investigated the molecular characteristics of 8 bap-positive Staph. aureus strains from subclinical bovine mastitis, isolated in 5 herds; somatic cell counts (SCC) of milk samples were also registered. Strains were characterised using MLST, SPA typing and microarray and the results were compared with V329. All isolates from this study and V329 were assigned to ST126, t605, but some molecular differences were observed. Only herd A and B strains harboured the genes for β-lactams resistance; the leukocidin D/E gene, a type I site-specific deoxyribonuclease subunit, 3rd locus gene and serin-protease A and B were carried by all strains, but not by V329, while serin-protease E was absent in V329 and in another isolate. Four isolates and V329 harboured the fibronectin-binding protein B gene. SCC showed the highest value in the milk sample affected by the only strain carrying all the virulence factors considered. Potential large variability of virulence was evidenced among V329 and all bap-positive Staph. aureus strains considered: the carriage of fnb could enhance the accumulation of biofilm, but the lack of lukD/E and splA, B or E might decrease the invasiveness of strain.
150

The lag between micro- and macro-mixing in compressed fluid flows

Bassing, Daniel, Bräuer, Andreas S. 27 July 2020 (has links)
We report the application of a novel optical Raman-based measurement technique for the simultaneous determination of the progress of mixing on the micro- and on the macro-scale. The introduced measurement technique is applicable to mixing systems containing one compound, which potentially can form hydrogen bonds, such as water, alcohols or amines, and does not rely on the addition of traces of indicator compounds. Here we demonstrate its applicability by analyzing the lag of micro-mixing behind macro-mixing when liquid ethanol is injected into a supercritical bulk environment mainly composed of carbon dioxide (CO2). While the degree of mixing on the macro-scale is determined from the ratio of the intensities of characteristic Raman signals of ethanol and CO2, the degree of mixing on the micro-scale is determined from the shape of the OH stretching vibration Raman signal of ethanol, which is a function of the development of hydrogen bonds.

Page generated in 0.1059 seconds