• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 15
  • 3
  • Tagged with
  • 18
  • 18
  • 18
  • 18
  • 18
  • 11
  • 10
  • 9
  • 7
  • 7
  • 5
  • 4
  • 4
  • 4
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Lineares Vibrationsschweißen von Kunststoffen im industriellen Umfeld: Einflüsse und Restriktionen

Friedrich, Sven 26 June 2014 (has links)
Aufgrund der stetig wachsenden Anforderungen hinsichtlich Gewichtsreduzierung und Funktionsintegration, besonders im Bereich des Automobilbaus, werden traditionell aus metallischen Werkstoffen gefertigte Komponenten immer häufiger durch Kunststoffbauteile substituiert. Dem entgegen steht derzeit die Tatsache, dass, trotz hohen Prozessverständnisses und des Wissens um die Prozess-Struktur-Eigenschafts-Beziehungen beim Vibrationsschweißen, die theoretisch erzielbaren Schweißnahtfestigkeiten, von 90 % bis 100 % des unverstärkten Grundmaterials, in der industriellen Serienfertigung bei weitem nicht erreicht werden. Die Komplexität eines industriell gefertigten Bauteils wird an Plattenprüfkörpern simuliert. Die Ergebnisse der Schweißversuche zeigen, dass unterschiedliche Wandstärken im Schweißnahtbereich, Bauteilverzug und unterschiedliche Schwingrichungen innerhalb einer Schweißnaht zu ungleichmäßigen lokalen Prozessbedingungen währenden des linearen Vibrationsschweißprozesses führen. Diese hinterlassen lokale Schwachstellen, welche das Gesamtbauteilversagen bestimmen. Durch alternative Prozessführungsstrategien, wie das Hochdruckanfahren und die IR-Vorwärmung, können diese Schwachstellen reduziert und die Gesamtbauteilfestigkeit angehoben werden. Dies wird am Beispiel des Bauteilverzugs veranschaulicht. / Due to the increasing demands for weight reduction and integration of function, especially in the field of automotive, components made of metallic materials are increasingly being substituted by components made of thermoplastic materials. In contrast to this there is currently the fact that, despite the high process understanding of the vibration welding and the knowledge of the process-structure-property relationships, the theoretically achievable weld strengths of 90 % to 100 % of the unreinforced base material strength are far to be achieved in industrial series production. The complexity of an industrially manufactured component is simulated by using plate test specimens. The results of the welding experiments show that different wall thicknesses in the weld area, component warpage and different friction angle within the weld leads to nonuniform local process conditions during linear vibration welding process. This results in local weak spots, which reduce the total component strength. These local weak spots can be reduced by using alternative process strategies, such as in-process pressure variation and IR preheating. So not only the local strengths but also the total component strength will be increased. This is shown on the example of component warpage.
12

Beitrag zur Optimierung der Verfahrensparameter von Vliesstoffausrüstungsprozessen bei hohen Warengeschwindigkeiten

Grönke, Kerstin 19 September 2014 (has links)
Gegenstand der vorliegenden Arbeit ist die Untersuchung des Foulardierprozesses zur chemischen Nassausrüstung von Vliesstoffen bei Warengeschwindigkeiten bis zu 250 m/min. Hintergrund ist die abweisende Ausrüstung von Polypropylen-Spinnvliesstoffen für die Anwendung als Operationskittel. Wo bislang nach dem Stand der Technik eine Veredlung bei Lohnausrüstern bei geringen Warengeschwindigkeiten durchgeführt wurde, zeigt die Tendenz in der Vliesstoffindustrie in Richtung der eigenen Prozessbeherrschung. Eine grundlegende Voraussetzung, um den Foulardierprozess für diese Anwendung nutzbar zu machen, ist die Kenntnis über die Prozesseigenschaften bei den geforderten hohen Warengeschwindigkeiten. Für den abzudeckenden Versuchsraum mit sechs Einflussgrößen bei jeweils drei Faktorstufen wurde mittels der Methodik der statistischen Versuchsplanung ein D-optimaler Versuchsplan erstellt. Die Versuchsdurchführung erfolgte auf einem in eine Technikumsanlage eingebundenen Foulard mit horizontaler Walzenanordnung. Für jede der sieben Zielgrößen wurde auf Grundlage der erhaltenen Messwerte eine lineare Regressionsanalyse erstellt und ausgewertet. Eine detaillierte Analyse und Diskussion der Regressionsmodelle liefert Informationen zu Wirkungsrichtung und Intensität der einzelnen Einflussgrößen sowie zu Faktor-Faktor-Wechselwirkungen.:1 Einleitung 8 1.1 Ausgangspunkt 8 1.2 Produktionsmengen 8 1.3 Vliesstoffe in der medizinischen Anwendung 11 1.4 Vliesstoffauswahl 13 2 Wissenschaftlich-technische Problemstellung 16 2.1 Stand der Technik 16 2.2 Zielstellung und Vorgehensweise 21 3 Foulardierprozess: Prozessbeschreibung und Einflussgrößen 22 3.1 Foulardieren: Prozessbeschreibung 22 3.2 Foulardieren: Einflussgrößen 25 3.2.1 Einflussfaktoren Maschinendesign 25 3.2.2 Einflussfaktoren Verfahrensparameter 29 3.2.3 Einflussfaktoren Vliesstoffmaterial 30 3.2.4 Einflussfaktoren Imprägnierflotte 31 3.3 Einflussgrößen und Zielgrößen 33 4 Versuchsanordnung und Versuchsfoulard 34 4.1 Technikumsanlage am STFI 34 4.2 Versuchsfoulard 35 4.2.1 Horizontale Walzenanordnung 37 4.2.2 Hilfstrieb auf der S-Walze 38 4.2.3 Druckgebung und Quetschfugenbreite 38 4.2.4 Flottenführung 38 4.2.5 Niveauregelung, Flottenvolumen 39 4.2.6 Flottenverbrauch 40 4.2.7 Tauchstrecke, Verweilstrecke und Verweilzeit 42 4.2.8 Flottentemperatur 43 5 Material und Methoden 45 5.1 Vliesstoffmaterial 45 5.2 Ausrüstungsflotte 46 5.3 Mess- und Prüfmethoden 48 5.3.1 Feuchteaufnahme 48 5.3.2 Dicke 49 5.3.3 Luftdurchlässigkeit 50 5.3.4 Zugfestigkeit und Höchstzugkraftdehnung 50 6 Statistische Versuchsplanung und Regressionsanalyse 51 6.1 Vorbemerkung 51 6.2 D-optimale Versuchspläne 51 6.3 Versuchsplan 54 6.4 Darstellung des Versuchsraums 57 6.4.1 Faktor-Faktor-Kombinationen 57 6.4.2 Flottentemperatur TSoll versus TIst 58 6.5 Regressionsanalyse 59 6.5.1 Allgemeine Regressionsgleichung 59 6.5.2 Generelle Vorgehensweise 61 7 Regressionsanalyse für Zielgröße Feuchteaufnahme 62 7.1 Datenplausibilität der Zielgröße 62 7.2 Erstellen und Prüfen der Regressionsgleichung 64 7.2.1 Erstellen einer Regressionsgleichung 64 7.2.2 Bewertung der Güte der Regression, Residuenanalyse 69 7.2.3 Nachprüfen des Modells anhand von Beispieldaten 75 7.3 Auswerten der Regressionsgleichung 76 7.3.1 Intensität und Wichtung der Einflussgrößen 76 7.3.2 Wechselwirkungen 85 7.4 Grafische Darstellung des Gesamtmodells 90 8 Regressionsanalyse für Zielgröße Dicke 95 8.1 Datenplausibilität der Zielgröße 95 8.2 Erstellen und Prüfen der Regressionsgleichung 96 8.2.1 Erstellen einer Regressionsgleichung 96 8.2.2 Bewertung der Güte der Regression, Residuenanalyse 96 8.2.3 Nachprüfen des Modells anhand von Beispieldaten 97 8.3 Auswerten der Regressionsgleichung 98 8.3.1 Intensität und Wichtung der Einflussgrößen 98 8.3.2 Wechselwirkungen 103 8.4 Grafische Darstellung des Gesamtmodells 105 9 Regressionsanalyse für Zielgröße Luftdurchlässigkeit 107 9.1 Datenplausibilität der Zielgröße 107 9.2 Erstellen und Prüfen der Regressionsgleichung 107 9.2.1 Erstellen einer Regressionsgleichung 107 9.2.2 Bewertung der Güte der Regression, Residuenanalyse 108 9.2.3 Nachprüfen des Modells anhand von Beispieldaten 109 9.3 Auswerten der Regressionsgleichung 110 9.3.1 Intensität und Wichtung der Einflussgrößen 110 9.3.2 Wechselwirkungen 115 9.4 Grafische Darstellung des Gesamtmodells 118 10 Regressionsanalyse für Zielgröße Zugfestigkeit MD 120 10.1 Datenplausibilität der Zielgröße 120 10.2 Erstellen und Prüfen der Regressionsgleichung 120 10.2.1 Erstellen einer Regressionsgleichung 120 10.2.2 Bewertung der Güte der Regression, Residuenanalyse 121 10.2.3 Nachprüfen des Modells anhand von Beispieldaten 122 10.3 Auswerten der Regressionsgleichung 123 10.3.1 Intensität und Wichtung der Einflussgrößen 123 10.3.2 Wechselwirkungen 128 10.4 Grafische Darstellung des Gesamtmodells 131 11 Regressionsanalyse für Zielgröße Zugfestigkeit CD 133 11.1 Datenplausibilität der Zielgröße 133 11.2 Erstellen und Prüfen der Regressionsgleichung 133 11.2.1 Erstellen einer Regressionsgleichung 133 11.2.2 Bewertung der Güte der Regression, Residuenanalyse 134 11.2.3 Nachprüfen des Modells anhand von Beispieldaten 135 11.3 Auswerten der Regressionsgleichung 136 11.3.1 Intensität und Wichtung der Einflussgrößen 136 11.3.2 Wechselwirkungen 140 11.4 Grafische Darstellung des Gesamtmodells 141 12 Regressionsanalyse für Zielgröße Höchstzugkraftdehnung MD 143 12.1 Datenplausibilität der Zielgröße 143 12.2 Erstellen und Prüfen der Regressionsgleichung 144 12.2.1 Erstellen einer Regressionsgleichung 144 12.2.2 Bewertung der Güte der Regression, Residuenanalyse 144 12.2.3 Nachprüfen des Modells anhand von Beispieldaten 145 12.3 Auswerten der Regressionsgleichung 146 12.3.1 Intensität und Wichtung der Einflussgrößen 146 12.3.2 Wechselwirkungen 151 12.4 Grafische Darstellung des Gesamtmodells 153 13 Regressionsanalyse für Zielgröße Höchstzugkraftdehnung CD 155 13.1 Datenplausibilität der Zielgröße 155 13.2 Erstellen und Prüfen der Regressionsgleichung 155 13.2.1 Erstellen einer Regressionsgleichung 155 13.2.2 Bewertung der Güte der Regression, Residuenanalyse 156 13.2.3 Nachprüfen des Modells anhand von Beispieldaten 157 13.3 Auswerten der Regressionsgleichung 158 13.3.1 Intensität und Wichtung der Einflussgrößen 158 13.3.2 Wechselwirkungen 160 13.4 Grafische Darstellung des Gesamtmodells 161 14 Zusammenfassung 163 15 Ausblick 167 Literaturverzeichnis 169 Verzeichnis der Abbildungen 173 Verzeichnis der Tabellen 176 Verzeichnis der Anhänge 180 / The subject of the work presented here is the study of the padding process for the chemical wet finishing of nonwovens at web speeds up to 250 m/min. Background to the topic is the repellent treatment of polypropylene spunbond nonwovens applied for surgical gowns. Finishing carried out at subcontractors corresponding to best practice technology up to now, the trend in the nonwovens industry is turning towards an in-house process mastery. Essential requirement to make the padding process technologically exploitable for this kind of application is the knowledge of the process characteristics at the high web speeds claimed. For the experimental scenario to be covered comprising six determining factors at three level steps each, a D-optimal trial plan was defined using the statistic method of the design of experiments (DOE). The realization of the trials carried out on a padder with horizontal roll arrangement installed in a pilot line. For each of the seven responses a linear regression analyses was compiled and evaluated. A detailed analysis and discussion of the regression models provides information on direction of influence as well as intensity of each of the determining factors and factor-factor-interactions.:1 Einleitung 8 1.1 Ausgangspunkt 8 1.2 Produktionsmengen 8 1.3 Vliesstoffe in der medizinischen Anwendung 11 1.4 Vliesstoffauswahl 13 2 Wissenschaftlich-technische Problemstellung 16 2.1 Stand der Technik 16 2.2 Zielstellung und Vorgehensweise 21 3 Foulardierprozess: Prozessbeschreibung und Einflussgrößen 22 3.1 Foulardieren: Prozessbeschreibung 22 3.2 Foulardieren: Einflussgrößen 25 3.2.1 Einflussfaktoren Maschinendesign 25 3.2.2 Einflussfaktoren Verfahrensparameter 29 3.2.3 Einflussfaktoren Vliesstoffmaterial 30 3.2.4 Einflussfaktoren Imprägnierflotte 31 3.3 Einflussgrößen und Zielgrößen 33 4 Versuchsanordnung und Versuchsfoulard 34 4.1 Technikumsanlage am STFI 34 4.2 Versuchsfoulard 35 4.2.1 Horizontale Walzenanordnung 37 4.2.2 Hilfstrieb auf der S-Walze 38 4.2.3 Druckgebung und Quetschfugenbreite 38 4.2.4 Flottenführung 38 4.2.5 Niveauregelung, Flottenvolumen 39 4.2.6 Flottenverbrauch 40 4.2.7 Tauchstrecke, Verweilstrecke und Verweilzeit 42 4.2.8 Flottentemperatur 43 5 Material und Methoden 45 5.1 Vliesstoffmaterial 45 5.2 Ausrüstungsflotte 46 5.3 Mess- und Prüfmethoden 48 5.3.1 Feuchteaufnahme 48 5.3.2 Dicke 49 5.3.3 Luftdurchlässigkeit 50 5.3.4 Zugfestigkeit und Höchstzugkraftdehnung 50 6 Statistische Versuchsplanung und Regressionsanalyse 51 6.1 Vorbemerkung 51 6.2 D-optimale Versuchspläne 51 6.3 Versuchsplan 54 6.4 Darstellung des Versuchsraums 57 6.4.1 Faktor-Faktor-Kombinationen 57 6.4.2 Flottentemperatur TSoll versus TIst 58 6.5 Regressionsanalyse 59 6.5.1 Allgemeine Regressionsgleichung 59 6.5.2 Generelle Vorgehensweise 61 7 Regressionsanalyse für Zielgröße Feuchteaufnahme 62 7.1 Datenplausibilität der Zielgröße 62 7.2 Erstellen und Prüfen der Regressionsgleichung 64 7.2.1 Erstellen einer Regressionsgleichung 64 7.2.2 Bewertung der Güte der Regression, Residuenanalyse 69 7.2.3 Nachprüfen des Modells anhand von Beispieldaten 75 7.3 Auswerten der Regressionsgleichung 76 7.3.1 Intensität und Wichtung der Einflussgrößen 76 7.3.2 Wechselwirkungen 85 7.4 Grafische Darstellung des Gesamtmodells 90 8 Regressionsanalyse für Zielgröße Dicke 95 8.1 Datenplausibilität der Zielgröße 95 8.2 Erstellen und Prüfen der Regressionsgleichung 96 8.2.1 Erstellen einer Regressionsgleichung 96 8.2.2 Bewertung der Güte der Regression, Residuenanalyse 96 8.2.3 Nachprüfen des Modells anhand von Beispieldaten 97 8.3 Auswerten der Regressionsgleichung 98 8.3.1 Intensität und Wichtung der Einflussgrößen 98 8.3.2 Wechselwirkungen 103 8.4 Grafische Darstellung des Gesamtmodells 105 9 Regressionsanalyse für Zielgröße Luftdurchlässigkeit 107 9.1 Datenplausibilität der Zielgröße 107 9.2 Erstellen und Prüfen der Regressionsgleichung 107 9.2.1 Erstellen einer Regressionsgleichung 107 9.2.2 Bewertung der Güte der Regression, Residuenanalyse 108 9.2.3 Nachprüfen des Modells anhand von Beispieldaten 109 9.3 Auswerten der Regressionsgleichung 110 9.3.1 Intensität und Wichtung der Einflussgrößen 110 9.3.2 Wechselwirkungen 115 9.4 Grafische Darstellung des Gesamtmodells 118 10 Regressionsanalyse für Zielgröße Zugfestigkeit MD 120 10.1 Datenplausibilität der Zielgröße 120 10.2 Erstellen und Prüfen der Regressionsgleichung 120 10.2.1 Erstellen einer Regressionsgleichung 120 10.2.2 Bewertung der Güte der Regression, Residuenanalyse 121 10.2.3 Nachprüfen des Modells anhand von Beispieldaten 122 10.3 Auswerten der Regressionsgleichung 123 10.3.1 Intensität und Wichtung der Einflussgrößen 123 10.3.2 Wechselwirkungen 128 10.4 Grafische Darstellung des Gesamtmodells 131 11 Regressionsanalyse für Zielgröße Zugfestigkeit CD 133 11.1 Datenplausibilität der Zielgröße 133 11.2 Erstellen und Prüfen der Regressionsgleichung 133 11.2.1 Erstellen einer Regressionsgleichung 133 11.2.2 Bewertung der Güte der Regression, Residuenanalyse 134 11.2.3 Nachprüfen des Modells anhand von Beispieldaten 135 11.3 Auswerten der Regressionsgleichung 136 11.3.1 Intensität und Wichtung der Einflussgrößen 136 11.3.2 Wechselwirkungen 140 11.4 Grafische Darstellung des Gesamtmodells 141 12 Regressionsanalyse für Zielgröße Höchstzugkraftdehnung MD 143 12.1 Datenplausibilität der Zielgröße 143 12.2 Erstellen und Prüfen der Regressionsgleichung 144 12.2.1 Erstellen einer Regressionsgleichung 144 12.2.2 Bewertung der Güte der Regression, Residuenanalyse 144 12.2.3 Nachprüfen des Modells anhand von Beispieldaten 145 12.3 Auswerten der Regressionsgleichung 146 12.3.1 Intensität und Wichtung der Einflussgrößen 146 12.3.2 Wechselwirkungen 151 12.4 Grafische Darstellung des Gesamtmodells 153 13 Regressionsanalyse für Zielgröße Höchstzugkraftdehnung CD 155 13.1 Datenplausibilität der Zielgröße 155 13.2 Erstellen und Prüfen der Regressionsgleichung 155 13.2.1 Erstellen einer Regressionsgleichung 155 13.2.2 Bewertung der Güte der Regression, Residuenanalyse 156 13.2.3 Nachprüfen des Modells anhand von Beispieldaten 157 13.3 Auswerten der Regressionsgleichung 158 13.3.1 Intensität und Wichtung der Einflussgrößen 158 13.3.2 Wechselwirkungen 160 13.4 Grafische Darstellung des Gesamtmodells 161 14 Zusammenfassung 163 15 Ausblick 167 Literaturverzeichnis 169 Verzeichnis der Abbildungen 173 Verzeichnis der Tabellen 176 Verzeichnis der Anhänge 180
13

Beitrag zur Entwicklung eines hochdynamischen variothermen Temperiersystems für Spritzgießwerkzeuge

Deckert, Matthias H. 20 April 2012 (has links)
Für die Verarbeitung von thermoplastischen Polymeren im Spritzgießprozess ist die Wahl der Werkzeugwandtemperatur entscheidend für die Formteileigenschaften und die optimale Zykluszeit. Das Spritzgießwerkzeug wird standardmäßig bei einer konstanten Werkzeugwandtemperatur betrieben, die bei speziellen Anwendungen, wie zum Beispiel die Abformung von nanostrukturierten Oberflächen, kaum eingesetzt werden kann. Dafür muss die Werkzeugwandtemperatur aktiv über die Dauer eines Spritzgießzyklus variiert werden. Für die variotherme Temperierung wird im Rahmen der vorliegenden Arbeit eine neue Technik auf Basis einer elektrischen Widerstandsheizung entwickelt und untersucht. Ziel der Arbeit ist die Entwicklung eines hochdynamischen Temperaturwechsels auf einer formgebenden Werkzeugwand, unter Vorgabe der Temperaturverteilung und ohne die Maschinennebenzeit zu verlängern. Dazu werden verschiedene elektrische Heizelemente konzipiert und untersucht. / For the processing of thermoplastic polymers in an injection molding process is the choice of the cavity temperature a critical property and a shape of the optimum cycle time. The standard injection molding process with a quasi constant mold wall temperature cannot be used in the case of special applications, such as the replication of nanostructured surfaces. For this the mold wall temperature has to be varied actively over the duration of an injection molding cycle. These variothermal temperature process is within the scope of the present study especially using a new developed technique based on an electrical resistance heating device. The aim of this work is to develop a highly dynamic temperature change on an injection mold wall by a defined temperature destribution and without an extended machine idle time. Various electric heating elements are designed and tested.
14

Beitrag zur Entwicklung eines hochdynamischen variothermen Temperiersystems für Spritzgießwerkzeuge

Deckert, Matthias H. 20 April 2012 (has links)
Für die Verarbeitung von thermoplastischen Polymeren im Spritzgießprozess ist die Wahl der Werkzeugwandtemperatur entscheidend für die Formteileigenschaften und die optimale Zykluszeit. Das Spritzgießwerkzeug wird standardmäßig bei einer konstanten Werkzeugwandtemperatur betrieben, die bei speziellen Anwendungen, wie zum Beispiel die Abformung von nanostrukturierten Oberflächen, kaum eingesetzt werden kann. Dafür muss die Werkzeugwandtemperatur aktiv über die Dauer eines Spritzgießzyklus variiert werden. Für die variotherme Temperierung wird im Rahmen der vorliegenden Arbeit eine neue Technik auf Basis einer elektrischen Widerstandsheizung entwickelt und untersucht. Ziel der Arbeit ist die Entwicklung eines hochdynamischen Temperaturwechsels auf einer formgebenden Werkzeugwand, unter Vorgabe der Temperaturverteilung und ohne die Maschinennebenzeit zu verlängern. Dazu werden verschiedene elektrische Heizelemente konzipiert und untersucht. / For the processing of thermoplastic polymers in an injection molding process is the choice of the cavity temperature a critical property and a shape of the optimum cycle time. The standard injection molding process with a quasi constant mold wall temperature cannot be used in the case of special applications, such as the replication of nanostructured surfaces. For this the mold wall temperature has to be varied actively over the duration of an injection molding cycle. These variothermal temperature process is within the scope of the present study especially using a new developed technique based on an electrical resistance heating device. The aim of this work is to develop a highly dynamic temperature change on an injection mold wall by a defined temperature destribution and without an extended machine idle time. Various electric heating elements are designed and tested.
15

Heat transfer process between polymer and cavity wall during injection molding

Liu, Yao 05 December 2014 (has links)
Injection molding is one of the most commonly applied processing methods for plastic components. Heat transfer coefficient (HTC), which describes the heat conducting ability of the interface between a polymer and cavity wall, significantly influences the temperature distribution of a polymer and mold during injection molding and thus affects the process and quality of plastic products. This thesis focuses on HTC under diverse processing situations. On the basis of the heat conducting principle, a theoretical model for calculating HTC was presented. Injection mold specially used for measuring and calculating HTC was designed and fabricated. Experimental injection studies under different processing conditions, especially different surface roughness, were performed for acquiring necessary temperature data. The heat quantity across the interface and HTC between a polymer and cavity wall was calculated on the basis of experimental results. The influence of surface roughness on HTC during injection molding was investigated for the first time. The factors influencing the HTC were analyzed on the basis of the factor weight during injection molding. Subsequently FEM (Finite element method) simulations were carried out with observed and preset value of HTC respectively and the relative crystallinity and part density were obtained. In the comparison between results from simulation and experiment, the result calculated with observed HTC shows better agreement with actually measured value, which can verify the reliability and precision of the injection molding simulation with observed HTC. The results of this thesis is beneficial for understanding the heat transfer process comprehensively, predicting temperature distribution, arranging cooling system, reducing cycle time and improving precision of numerical simulation. / Das Spritzgießen ist eines der am häufigsten angewandten Verarbeitungsverfahren zur Herstellung von Kunststoffkomponenten. Der Wärmedurchgangskoeffizient (WDK), welcher den Wärmeübergang zwischen Kunststoff und Werkzeugwand beschreibt, beeinflusst während des Spritzgießens maßgeblich die Temperaturverteilung im Bauteil und dem Werkzeug und folglich den Prozess und die Qualität der Kunststoffprodukte. Der Inhalt dieser Arbeit beschäftigt sich mit dem WDK unter verschiedenen Prozessbedingungen. Auf Grundlage des Wärmeleitungsprinzips wurde ein theoretisches Modell für die Berechnung des WDK vorgestellt. Es wurde dazu ein Spritzgießwerkzeug konstruiert und hergestellt, welches Messungen zur späteren Berechnung des WDK ermöglicht. Praktische Spritzgießversuche unter verschiedenen Prozessbedingungen, insbesondere unterschiedlicher Oberflächenrauheit, wurden für die Erfassung der erforderlichen Temperaturdaten durchgeführt. Auf Grundlage der experimentellen Ergebnisse wurde der Wärmeübergang zwischen dem Polymer und der Werkzeugwand berechnet. Der Einfluss der Oberflächenrauhigkeit auf den WDK wurde hierbei zum ersten Mal untersucht. Auf Grundlage des Bauteilgewichtes wurden anschließend die Faktoren, die den WDK beeinflussen, berechnet. Des Weiteren wurden FEM-Simulationen (Finite Element Methode) mit dem gemessenen und dem voreingestellten WDK durchgeführt und daraus der Kristallinitätsgrad und die Bauteildichte gewonnen. Der Vergleich zwischen den realen Ergebnissen und der Simulation zeigt, dass die Berechnungen mit dem gemessenen WDK eine bessere Übereinstimmung mit den realen Werten aufweist, was die Zuverlässigkeit und Präzision der Spritzgusssimulation bestätigt. Die Ergebnisse dieser Arbeit tragen zum umfassenden Verständnis des Wärmeübergangs im Spritzgießprozess, zur Vorhersage der Temperaturverteilung, zur Auslegung des Kühlsystems, zur Reduzierung der Zykluszeit und zur Verbesserung der Genauigkeit der numerischen Simulation bei.
16

Variotherme Spritzgießtechnologie zur Beeinflussung tribologischer Eigenschaften thermoplastischer Formteile

Bleesen, Christoph A. 22 April 2016 (has links)
Im Rahmen der vorliegenden Arbeit wurde ein Spritzgießwerkzeug mit einem neuartigen Mehrschichtverbundheizsystem zur dynamischen Temperierung entwickelt und umgesetzt. Dabei wurde das ausgewählte Heiz‐ und Kühlsystem unter theoretischen und praktischen Gesichtspunkten betrachtet und für den variothermen Fertigungsprozess verifiziert. Aus den ersten durchgeführten praktischen Versuchen zeigte sich, dass dieses Heizsystem zur dynamischen Temperierung von Formwerkzeugen geeignet ist. Anschließend wurden mit dem realisierten Spritzgießwerkzeug Versuchskörper mit spezieller Oberflächenstrukturierung und variierenden Werkzeugwandtemperaturen angefertigt und untersucht. Ziel war es, über diese Strukturierung eine Beeinflussung der Glasfaserverteilung im Formteilrandbereich zu erreichen und die tribologischen Eigenschaften bei Kunststoff‐Kunststoff‐Gleitpaarungen hinsichtlich Reibung und Verschleiß zu verbessern. Mit einer kleinen Auswahl an Strukturen und entsprechenden thermoplastischen Polymermaterialien wurden praktische Versuche zur tribologischen Prüfung durchgeführt. / In the present work an injection mould was developed and implemented with a novel multilayer composite heating system for dynamic temperature control. Here the selected heating and cooling system was considered from a theoretical and practical point of view and verified for the variothermal manufacturing process. The first practical tests showed that this heating system is suitable for the dynamic temperature control of tools. Subsequently, with this injection mould, test specimens with a special surface structure and varying mould wall temperatures were produced and examined. The aim was to achieve through this structuring an impact on the distribution of glass fibres in the edge region of mouldings and improve the tribological properties of plastic‐plastic‐pairings in terms of friction and wear. With a small selection of structures and corresponding thermoplastic polymeric materials practical experiments for tribological testing were performed.
17

Zum Einfluss der Oberflächenbeschaffenheit metallischer Verbundpartner auf die Grenzflächeneigenschaften von Kunststoff-Metall-Verbunden

Spadaro, Marcel 29 January 2024 (has links)
Das Verständnis über die Ausbildung der Grenzfläche eines hybriden Bauteils aus thermoplastischem Kunststoff und Metall sowie die maßgeblichen Faktoren zum Erreichen einer hohen Verbundhaftung und Mediendichtheit in der Grenzfläche stellen nach wie vor eine große Herausforderung dar. Am Beispiel einer spritzgegossenen Kunststoff-Metall-Verbundprobe werden diese Zusammenhänge untersucht und bewertet. Es wird eine Methode zur Herstellung stoffschlüssig gefügter Verbunde mit hoher Mediendichtheit auf Basis einer hohen Kontakttemperatur beim Fügen entwickelt, indem Verbundspritzgießen und nachträgliches thermisches Fügen durch Induktionsheizen kombiniert werden. Eine stoffschlüssige Verbindung mit hoher Mediendichtheit zwischen thermoplastischem Kunststoff und Metall erfordert eine Haftung in der Grenzfläche der Verbundpartner auf Basis intermolekularer Wechselwirkungen. Die Quantifizierung der Mediendichtheit in der Grenzfläche erfolgt über eine eigens entwickelte Messmethode. Die entwickelte Vorgehensweise ermöglichet die Differenzierung zwischen intermolekularen Wechselwirkungen und mechanischen Verklammerungen als Ursache für eine Haftungsausbildung und deren Einfluss auf die Grenzflächeneigenschaften. Die gewonnenen Erkenntnisse tragen zum Verständnis der Grenzflächenausbildung, insbesondere zum Einfluss der Oberflächenbeschaffenheit des metallischen Verbundpartners sowie der Fügeprozessbedingungen zur Fertigung von Kunststoff-Metall-Verbunden mit hoher Mediendichtheit, bei.:1 Einleitung und Motivation 2 Stand der Technik und Forschung 3 Zielsetzung und Lösungsansatz 4 Experimentelles 5 Analytik 6 Ergebnisse 7 Diskussion der Ergebnisse 8 Zusammenfassung und Ausblick / Understanding the formation of the interface of a hybrid component made of thermoplastic and metal as well as the decisive factors for achieving high adhe-sion and media tightness in the interface still represent a major challenge. These relationships are investigated and elucidated using the example of an injection-molded plastic-metal part. A method for the production of firmly bonded hybrid parts with high media tightness based on a high contact temperature during joining of the hybrid part is developed by combining injection molding and subsequent thermal joining by induction heating. A firm bond with high media tightness between a thermoplastic and a metal requires an adhesion in the inter-face of the joint materials based on molecular interactions. The quantification of the media tightness in the interface is done by using a specially developed measurement method. The investigations enable the differentiation between molecular interactions and mechanical interlocking as the cause of adhesion formation and their influence on the properties of the interface. The gained knowledge contributes to the understanding of interface formation and its prop-erties, in particular the influence of the surface properties of the metallic bond partner and the joining process conditions for the production of plastic-metal parts with high media tightness.:1 Einleitung und Motivation 2 Stand der Technik und Forschung 3 Zielsetzung und Lösungsansatz 4 Experimentelles 5 Analytik 6 Ergebnisse 7 Diskussion der Ergebnisse 8 Zusammenfassung und Ausblick
18

Potential von Nanosuspensionen zum Fügen bei niedrigen Temperaturen

Hausner, Susann 15 December 2015 (has links)
In der vorliegenden Arbeit werden nanopartikelhaltige Suspensionen auf Ag- und Ni-Basis sowie Ag-Precursoren, die während des Erwärmungsprozesses Nanopartikel bilden, bezüglich ihrer Eignung zum Fügen bei niedrigen Temperaturen untersucht. Dabei wird die, im Vergleich zum entsprechenden Massivmaterial, verringerte Schmelz- und Sintertemperatur von Nanopartikeln ausgenutzt. Da nach dem Schmelz- und Sinterprozess der Partikel die thermischen Eigenschaften des Massivmaterials vorliegen, ergibt sich ein großes Potential für die Herstellung hochfester und temperaturbeständiger Verbindungen bei gleichzeitig niedrigen Fügetemperaturen, was für eine Vielzahl von Fügeaufgaben von großem Interesse ist. In der Arbeit wird zunächst eine kommerzielle Ag-Nanopaste insbesondere bezüglich ihres thermischen Verhaltens charakterisiert. In der Folge werden Fügeverbindungen mit Cu-Substraten hergestellt, die in Abhängigkeit verschiedener Prozessparameter bzgl. der Festigkeiten, der Mikrostruktur sowie der Bruchflächen detailliert charakterisiert werden. Dabei zeigt sich, dass insbesondere der Fügedruck einen signifikanten Einfluss auf die erreichbaren Festigkeiten ausübt. Mit hohen Fügedrücken können bei einer Fügetemperatur von 300 °C höhere Verbindungsfestigkeiten als mit einem konventionellen Hartlot auf AgCu-Basis (Löttemperatur: 780 °C) erreicht werden. Weiterhin werden erste Ergebnisse zum Fügen von Stählen mit einer Ni-Nanopaste vorgestellt, mit der hohe Verbindungsfestigkeiten erzielt werden können. Schließlich wird mit Ag-Precursoren eine weitere Klasse möglicher Fügewerkstoffe vorgestellt, die erst während des Erwärmungs- bzw. Fügeprozesses Nanopartikel bilden, was in einer deutlich vereinfachten Handhabbarkeit resultiert. Die Arbeit liefert zudem Ansätze für weitere Forschungstätigkeiten. / In this thesis, Ag- and Ni-based nanoparticle-containing suspensions and Ag precursors, which form nanoparticles during heating, are examined with regard to their suitability for joining at low temperatures. Nanoparticles exhibit a decrease in sintering and melting temperature in comparison to the corresponding bulk material. After melting and sintering of the nanoparticles, the material behaves like the bulk material. Therefore, high-strength and temperature-resistant joints can be produced at low temperatures, which is of great interest for various joining tasks. First, a commercially available Ag nanopaste is characterized in particular regarding to its thermal behavior. Subsequently, joints (substrate: Cu) are prepared with the Ag nanopaste. The influence of different process parameters on the strength behavior of the joints, the microstructure and the fracture surfaces is investigated. It is shown, that in particular the joining pressure exerts an essential influence on the achievable strengths. With high joining pressures, the strengths of conventionally brazed joints (AgCu brazing filler metal, brazing temperature: 780 °C) can be exceeded at a joining temperature of only 300 °C. Furthermore, first results for the joining of steels with a Ni nanopaste are presented, whereby high strengths can be achieved. Finally, with Ag precursors, an additional class of possible joining materials is presented, which form nanoparticles only during heating. This results in a significantly simplified handling. The work also provides approaches for further research activities.

Page generated in 0.2378 seconds