• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 1
  • Tagged with
  • 6
  • 6
  • 6
  • 6
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

All-inkjet-printed thin-film transistors: manufacturing process reliability by root cause analysis

Sowade, Enrico, Ramon, Eloi, Mitra, Kalyan Yoti, Martínez-Domingo, Carme, Pedró, Marta, Pallarès, Jofre, Loffredo, Fausta, Villani, Fulvia, Gomes, Henrique L., Terés, Lluís, Baumann, Reinhard R. 10 October 2016 (has links) (PDF)
We report on the detailed electrical investigation of all-inkjet-printed thin-film transistor (TFT) arrays focusing on TFT failures and their origins. The TFT arrays were manufactured on flexible polymer substrates in ambient condition without the need for cleanroom environment or inert atmosphere and at a maximum temperature of 150 °C. Alternative manufacturing processes for electronic devices such as inkjet printing suffer from lower accuracy compared to traditional microelectronic manufacturing methods. Furthermore, usually printing methods do not allow the manufacturing of electronic devices with high yield (high number of functional devices). In general, the manufacturing yield is much lower compared to the established conventional manufacturing methods based on lithography. Thus, the focus of this contribution is set on a comprehensive analysis of defective TFTs printed by inkjet technology. Based on root cause analysis, we present the defects by developing failure categories and discuss the reasons for the defects. This procedure identifies failure origins and allows the optimization of the manufacturing resulting finally to a yield improvement.
2

Inkjet printing of photonic structures and thin-film transistors based on evaporation-driven material transportation and self-assembly / Inkjetdruck von photonischen Strukturen und Dünnschichttransistoren durch verdunstungsgetriebenen Materialtransport und Selbstassemblierung

Sowade, Enrico 21 August 2017 (has links) (PDF)
Inkjet printing has emerged from a digital graphic arts printing technology to become a versatile tool for the patterned deposition of functional materials. This thesis contributes to the research in the area of functional inkjet printing by focusing on two different topics: (i) inkjet printing of colloidal suspensions to study the principles of deposit formation and to develop deposits with photonic properties based on self-assembly, and (ii) the development of a reliable manufacturing process for all-inkjet-printed thin-film transistors, highlighting the importance of selection of materials and inks, print pattern generation, and the interplay between ink, substrate and printing conditions. (i) Colloidal suspensions containing nanospheres were applied as ink formulation in order to study the fundamental processes of layer formation and to develop structures with periodically arranged nanospheres allowing the modulation of electromagnetic waves. Evaporation-driven self-assembly was found to be the main driver for the formation of the final deposit morphology. Fine-tuning of inkjet process parameters allows the deposition of highly ordered structures of nanospheres to be arranged as monolayer, multilayer or even three-dimensional assemblies with a microscopic spherical shape. (ii) This thesis demonstrates the development of a manufacturing process for thin-film transistors based on inkjet printing. The knowledge obtained from the study with the colloidal nanospheres is used to generate homogeneous and continuous thin films that are stacked well-aligned to each other to form transistors. Industrial printheads were applied in the manufacturing process, allowing for the up-scaling of the manufacturing by printing of several thousands of devices, and thus the possibility to study the process yield as a function of printing parameters. The discrete droplet-by-droplet nature of the inkjet printing process imposes challenges on the control of printed patterns. Inkjet printing of electronic devices requires a detailed understanding about the process and all of the parameters that influence morphological or functional characteristics of the deposits, such as the selection of appropriate inks and materials, the orientation of the print pattern layout to the deposition process and the reliability of the inkjet process.
3

Inkjet printing of photonic structures and thin-film transistors based on evaporation-driven material transportation and self-assembly

Sowade, Enrico 09 June 2017 (has links)
Inkjet printing has emerged from a digital graphic arts printing technology to become a versatile tool for the patterned deposition of functional materials. This thesis contributes to the research in the area of functional inkjet printing by focusing on two different topics: (i) inkjet printing of colloidal suspensions to study the principles of deposit formation and to develop deposits with photonic properties based on self-assembly, and (ii) the development of a reliable manufacturing process for all-inkjet-printed thin-film transistors, highlighting the importance of selection of materials and inks, print pattern generation, and the interplay between ink, substrate and printing conditions. (i) Colloidal suspensions containing nanospheres were applied as ink formulation in order to study the fundamental processes of layer formation and to develop structures with periodically arranged nanospheres allowing the modulation of electromagnetic waves. Evaporation-driven self-assembly was found to be the main driver for the formation of the final deposit morphology. Fine-tuning of inkjet process parameters allows the deposition of highly ordered structures of nanospheres to be arranged as monolayer, multilayer or even three-dimensional assemblies with a microscopic spherical shape. (ii) This thesis demonstrates the development of a manufacturing process for thin-film transistors based on inkjet printing. The knowledge obtained from the study with the colloidal nanospheres is used to generate homogeneous and continuous thin films that are stacked well-aligned to each other to form transistors. Industrial printheads were applied in the manufacturing process, allowing for the up-scaling of the manufacturing by printing of several thousands of devices, and thus the possibility to study the process yield as a function of printing parameters. The discrete droplet-by-droplet nature of the inkjet printing process imposes challenges on the control of printed patterns. Inkjet printing of electronic devices requires a detailed understanding about the process and all of the parameters that influence morphological or functional characteristics of the deposits, such as the selection of appropriate inks and materials, the orientation of the print pattern layout to the deposition process and the reliability of the inkjet process.:Bibliography II Abstract III Preface and acknowledgements IV On the major results and novelty of the thesis VII Table of contents VIII List of abbreviations and symbols X List of figures XII List of tables XX 1 Introduction 1 2 Fundamentals 6 2.1 Inkjet printing – an overview 6 2.2 Piezoelectric inkjet technology and a historical overview of inkjet printing 10 2.3 Pattern and film formation in inkjet printing under the scheme of self-assembly 20 2.4 Inkjet printing of colloidal nanospheres 27 2.5 Spherical colloidal assemblies 29 2.6 All-inkjet-printed thin film transistors 31 3 Experimental section 35 3.1 Inkjet printing systems and accessories 35 3.2 Inks and substrates 38 3.3 Print patterns 43 3.4 Post-processing 46 3.5 Optical, morphological and functional characterization 47 4 Inkjet printing of colloidal nanospheres: Evaporation-driven self-assembly based on ink-substrate interaction 49 4.1 Single droplet deposit morphology: Interaction of substrate and ink 49 4.2 Optical properties of inkjet-printed single droplet monolayers and multilayers 54 5 Inkjet printing of colloidal nanospheres: Evaporation-driven self-assembly of SCAs independent on substrate properties 58 5.1 Inkjet printing of spherical colloidal assemblies and their identification 58 5.2 Fine-tuning of the waveform applied to the printhead 60 5.3 Interaction of substrate and ink 66 5.4 Structures, morphologies and materials of SCAs 68 5.5 Optical properties of SCAs 76 6 Inkjet printing of TFTs: Process development and process reliability 80 6.1 Influence of print layout design 80 6.2 Selection of materials and inks 91 6.3 Manufacturing workflow and electrical TFT parameters 108 6.4 Manufacturing yields and failure origins 113 7 Summary and conclusion 124 References 127 Documentation of authorship and contribution of third persons 149 List of publications 151 APPENDIX A Formation of colloidal hemispheres on hydrophobic PTFE substrates 161 APPENDIX B Inkjet-printed higher-order cluster with N < 100 using BL280 162 APPENDIX C Inkjet-printed SCAs based on BS305 with similar sizes and inkjet-printed SCA based on PSC221 163 APPENDIX D Microreflectance spectra of SCAs and the processing of the spectra using the Savitzky-Golay filter with a second-order polynomial and a moving window of 100 data points 164 APPENDIX E Waveform, drop ejection and photographs of the printed patterns of Sun Chemical EMD5603 and UTDots UTDAgIJ1 165 APPENDIX F Smoothening of profiles obtained by profilometry of EMD5603 and UTDAgIJ1 and dependency of print resolution of layer height 166 APPENDIX G Percentage of area increase based on a 4 mm x 4 mm digital print pattern using the ink Harima NPS-JL and influence of print resolution and post-treatment temperature on sheets resistance 168 APPENDIX H Cross-sectional view of a TFT stack printed with the dielectric Sun Chemical EMD6415 that shows high layer thickness due to ink contraction after the deposition as presented in Figure 46 169 APPENDIX I Influence of printing parameters on the dielectric layer applied in the TFT 170 APPENDIX J Reduction of channel length by decreasing the S-D electrode channel length in the print pattern layout 171
4

Inkjet printing processes as an innovative manufacturing method for the production of catalytically coated membranes (CCM) for fuel cells as well as electrolyzers

Willert, Andreas, Zeiner, Christian, Zubkova, Tatiana, Zichner, Ralf 27 May 2022 (has links)
Digitally controlled inkjet printing technology has attractive features for the production of catalyst coated membranes (CCM) for application either in electrolysers or in fuel cells. There are a number of unique features: pattern like coating for effective use of expensive materials like platinum or iridium, direct deposition onto membrane material, non-impact printing, easy change of pattern design, and ability to generate catalytic gradients. Employing inkjet printing technology enables the manufacturing of catalytic layers as well as other components. The challenges are to evaluate process-compatible inks as well as processing parameters. / Die digital gesteuerte Inkjetdrucktechnologie hat attraktive Eigenschaften für die Herstellung von katalysatorbeschichteten Membranen (CCM), die entweder in Elektrolyseuren oder in Brennstoffzellen eingesetzt werden. Es gibt eine Reihe einzigartiger Merkmale: mustergenaue Beschichtung für den effektiven Einsatz teurer Materialien wie Platin oder Iridium, direkte Bedruckung des Membranmaterials, berührungsfreies Drucken, einfache Änderung des Druckdesigns und die Fähigkeit, katalytische Gradienten zu erzeugen. Der Einsatz der Inkjetdrucktechnologie ermöglicht die Herstellung von katalytischen Schichten und anderen Komponenten. Die Herausforderungen bestehen darin, prozesskompatible Tinten sowie Verarbeitungsparameter zu evaluieren.
5

Druckprozesse als gezielte und innovative Fertigungsmethode von katalytischen Brennstoffzellenschichten

Willert, Andreas, Meuser, Carmen, Mitra, Kalyan Y., Baumann, Reinhard R., Zichner, Ralf 25 November 2019 (has links)
Ein bedeutender Punkt in der Brennstoffzellentechnologie ist der Einsatz von platinhaltigen Elektroden, welche die Brennstoffzellentechnologie zu einer teuren Technologie macht. Zum jetzigen Zeitpunkt werden die katalytischen Schichten in großen Maßstäben als Endlos-Elektroden produziert, was dazu führt, dass die einzelnen Elektroden für die Stacks ausgeschnitten und hierbei viel nicht genutztes Elektrodenmaterial, sprich Abfall entsteht. Dieser kann später recycelt werden, jedoch ist eine 100 %ige Rückgewinnung der eingesetzten Rohstoffe nicht möglich. Die Drucktechnik bietet eine Möglichkeit diese Entstehung von Abfall zu vermeiden. Mittels der verschiedenen Drucktechnologien, wie z. B. Inkjet-, Tief- und Siebdruck ist es möglich Elektroden mit gezielten Geometrien zu fertigen, sprich die Elektrodenschichten werden genau an die Erfordernisse angepasst. Der Aufbau von Multilagen ist präzise möglich und es können MEA´s (Membran-Electrode Assembly) mit scharfen, klar abgegrenzten Kanten erstellt werden. In diesem Paper werden Ergebnisse der Inkjet- und Tiefdrucktechnologie vorgestellt, sowie deren Charakterisierung. Da bereits kleinste Unregelmäßigkeiten in den Elektroden zu einem Ausfall des Systems führen können, werden die katalytischen Schichten mittels Oberflächenprofilometer (Veeko Dektak 150) auf ihre Homogenität untersucht. Darüber hinaus werden die Leitfähigkeiten (SÜSS Microtec PM5 Probe System) und die Haftung der gedruckten Schichten in Abhängigkeit von der Drucktechnologie betrachtet. / An important point in fuel cell technology is the use of platinum-containing electrodes, which makes fuel cell technology an expensive technology. At present, the catalytic layers are produced on a large scale as continuous electrodes, which results in the individual electrodes being cut out for the stacks, resulting in a lot of unused electrode material, i.e. waste. This can be recycled later, but 100 % recovery of the raw materials used is not possible. The printing technology offers a possibility to avoid this generation of waste. Using the various printing technologies, such as inkjet, gravure, and screen printing, it is possible to produce electrodes with specific geometries, i.e. the electrode layers are precisely adapted to the requirements. The construction of multilayers is precisely possible and MEA's (Membrane Electrode Assembly) with sharp, clearly defined edges can be created. This paper presents the results of inkjet and gravure printing technology and their characterization. Since even the smallest irregularities in the electrodes can lead to system failure, the homogeneity of the catalytic layers is examined using a surface profilometer (Veeko Dektak 150). In addition, the conductivities (SUSS Microtec PM5 Probe System) and the adhesion of the printed layers will be examined as a function of the printing technology.
6

All-inkjet-printed thin-film transistors: manufacturing process reliability by root cause analysis

Sowade, Enrico, Ramon, Eloi, Mitra, Kalyan Yoti, Martínez-Domingo, Carme, Pedró, Marta, Pallarès, Jofre, Loffredo, Fausta, Villani, Fulvia, Gomes, Henrique L., Terés, Lluís, Baumann, Reinhard R. 10 October 2016 (has links)
We report on the detailed electrical investigation of all-inkjet-printed thin-film transistor (TFT) arrays focusing on TFT failures and their origins. The TFT arrays were manufactured on flexible polymer substrates in ambient condition without the need for cleanroom environment or inert atmosphere and at a maximum temperature of 150 °C. Alternative manufacturing processes for electronic devices such as inkjet printing suffer from lower accuracy compared to traditional microelectronic manufacturing methods. Furthermore, usually printing methods do not allow the manufacturing of electronic devices with high yield (high number of functional devices). In general, the manufacturing yield is much lower compared to the established conventional manufacturing methods based on lithography. Thus, the focus of this contribution is set on a comprehensive analysis of defective TFTs printed by inkjet technology. Based on root cause analysis, we present the defects by developing failure categories and discuss the reasons for the defects. This procedure identifies failure origins and allows the optimization of the manufacturing resulting finally to a yield improvement.

Page generated in 0.0245 seconds