• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

La société européenne de la connaissance : Une restructuration du processus d'intégration / The European Knowledge Society : a restructuring of the integration process

Fressoz, Xavier 29 September 2017 (has links)
Depuis le Conseil européen de Lisbonne en 2000, l’Union européenne s’active à devenir une société de la connaissance leader dans l’hypercompétition mondiale. Elle s’attache à enrichir et structurer ses ressources de diversité et de créativité en restructurant sa méthode d’intégration suivant une approche plus ascendante. Elle pousse aussi au décloisonnement de tous les secteurs socio-économiques afin d’en libérer les potentiels d’innovation. Une société en réseau se tisse ainsi grâce au développement des acteurs locaux et d’une connivence public-privé. Toutefois, ces mutations juridiques exigent l’adhésion active des citoyens. Dès lors, à côté des politiques d’éducation, de recherche et d’innovation, l’Union favorise les synergies avec les domaines de l’emploi, de la jeunesse et de la culture. Tous ces changements entraînent une quête effrénée de cohérence globale nécessaire à la compétitivité et à la durabilité du modèle européen de société de la connaissance. Pour atteindre ces objectifs, le droit européen va puiser sa cohérence dans l’articulation des concepts d’Etat social actif, de méritocratie et de démocratisation. / Since the European Council of Lisbon in 2000, the European Union tends to become a knowledge society leader in the world competition. It enriches and structures its ressources of diversity and creativity by generating a renewal of its integration method around a bottom-up approach. It stimulates too a decompartmentalization of all the socio-economic sectors to free all the innovation potentials. So, a network society appears thanks to the development of regional actors and a public-private connivance. But, the legal evolutions need to get the adhesion of the citizens. That’s why, in addition to the policies of education, research and innovation, the European Union fosters synergies with the domains of employment, youth and culture. All these transitions trigger a search of global coherence to guarantee the competitiveness and the sustainability of the European model of knowledge society. To reach these goals, the European law finds its coherence by articulating the notions of active welfare State, meritocracy and democratization.
2

Systèmes d’intelligence artificielle et santé : les enjeux d’une innovation responsable.

Voarino, Nathalie 09 1900 (has links)
L’avènement de l’utilisation de systèmes d’intelligence artificielle (IA) en santé s’inscrit dans le cadre d’une nouvelle médecine « haute définition » qui se veut prédictive, préventive et personnalisée en tirant partie d’une quantité inédite de données aujourd’hui disponibles. Au cœur de l’innovation numérique en santé, le développement de systèmes d’IA est à la base d’un système de santé interconnecté et auto-apprenant qui permettrait, entre autres, de redéfinir la classification des maladies, de générer de nouvelles connaissances médicales, ou de prédire les trajectoires de santé des individus en vue d’une meilleure prévention. Différentes applications en santé de la recherche en IA sont envisagées, allant de l’aide à la décision médicale par des systèmes experts à la médecine de précision (ex. ciblage pharmacologique), en passant par la prévention individualisée grâce à des trajectoires de santé élaborées sur la base de marqueurs biologiques. Des préoccupations éthiques pressantes relatives à l’impact de l’IA sur nos sociétés émergent avec le recours grandissant aux algorithmes pour analyser un nombre croissant de données relatives à la santé (souvent personnelles, sinon sensibles) ainsi que la réduction de la supervision humaine de nombreux processus automatisés. Les limites de l’analyse des données massives, la nécessité de partage et l’opacité des décisions algorithmiques sont à la source de différentes préoccupations éthiques relatives à la protection de la vie privée et de l’intimité, au consentement libre et éclairé, à la justice sociale, à la déshumanisation des soins et du patient, ou encore à la sécurité. Pour répondre à ces enjeux, de nombreuses initiatives se sont penchées sur la définition et l’application de principes directeurs en vue d’une gouvernance éthique de l’IA. L’opérationnalisation de ces principes s’accompagne cependant de différentes difficultés de l’éthique appliquée, tant relatives à la portée (universelle ou plurielle) desdits principes qu’à la façon de les mettre en pratique (des méthodes inductives ou déductives). S’il semble que ces difficultés trouvent des réponses dans la démarche éthique (soit une approche sensible aux contextes d’application), cette manière de faire se heurte à différents défis. L’analyse des craintes et des attentes citoyennes qui émanent des discussions ayant eu lieu lors de la coconstruction de la Déclaration de Montréal relativement au développement responsable de l’IA permet d’en dessiner les contours. Cette analyse a permis de mettre en évidence trois principaux défis relatifs à l’exercice de la responsabilité qui pourrait nuire à la mise en place d’une gouvernance éthique de l’IA en santé : l’incapacitation des professionnels de santé et des patients, le problème des mains multiples et l’agentivité artificielle. Ces défis demandent de se pencher sur la création de systèmes d’IA capacitants et de préserver l’agentivité humaine afin de favoriser le développement d’une responsabilité (pragmatique) partagée entre les différentes parties prenantes du développement des systèmes d’IA en santé. Répondre à ces différents défis est essentiel afin d’adapter les mécanismes de gouvernance existants et de permettre le développement d’une innovation numérique en santé responsable, qui doit garder l’humain au centre de ses développements. / The use of artificial intelligence (AI) systems in health is part of the advent of a new "high definition" medicine that is predictive, preventive and personalized, benefiting from the unprecedented amount of data that is today available. At the heart of digital health innovation, the development of AI systems promises to lead to an interconnected and self-learning healthcare system. AI systems could thus help to redefine the classification of diseases, generate new medical knowledge, or predict the health trajectories of individuals for prevention purposes. Today, various applications in healthcare are being considered, ranging from assistance to medical decision-making through expert systems to precision medicine (e.g. pharmacological targeting), as well as individualized prevention through health trajectories developed on the basis of biological markers. However, urgent ethical concerns emerge with the increasing use of algorithms to analyze a growing number of data related to health (often personal and sensitive) as well as the reduction of human intervention in many automated processes. From the limitations of big data analysis, the need for data sharing and the algorithmic decision ‘opacity’ stems various ethical concerns relating to the protection of privacy and intimacy, free and informed consent, social justice, dehumanization of care and patients, and/or security. To address these challenges, many initiatives have focused on defining and applying principles for an ethical governance of AI. However, the operationalization of these principles faces various difficulties inherent to applied ethics, which originate either from the scope (universal or plural) of these principles or the way these principles are put into practice (inductive or deductive methods). These issues can be addressed with context-specific or bottom-up approaches of applied ethics. However, people who embrace these approaches still face several challenges. From an analysis of citizens' fears and expectations emerging from the discussions that took place during the coconstruction of the Montreal Declaration for a Responsible Development of AI, it is possible to get a sense of what these difficulties look like. From this analysis, three main challenges emerge: the incapacitation of health professionals and patients, the many hands problem, and artificial agency. These challenges call for AI systems that empower people and that allow to maintain human agency, in order to foster the development of (pragmatic) shared responsibility among the various stakeholders involved in the development of healthcare AI systems. Meeting these challenges is essential in order to adapt existing governance mechanisms and enable the development of a responsible digital innovation in healthcare and research that allows human beings to remain at the center of its development.

Page generated in 0.2097 seconds